Display options
Share it on

Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11750-11755. doi: 10.1073/pnas.1610554113. Epub 2016 Oct 03.

Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production.

Proceedings of the National Academy of Sciences of the United States of America

Nikolay Kornienko, Kelsey K Sakimoto, David M Herlihy, Son C Nguyen, A Paul Alivisatos, Charles B Harris, Adam Schwartzberg, Peidong Yang

Affiliations

  1. Department of Chemistry, University of California, Berkeley, CA 94720.
  2. Department of Chemistry, University of California, Berkeley, CA 94720; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720; Kavli Energy NanoSciences Institute, Berkeley, CA 94720.
  3. Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  4. Department of Chemistry, University of California, Berkeley, CA 94720; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720; Kavli Energy NanoSciences Institute, Berkeley, CA 94720; [email protected].

PMID: 27698140 PMCID: PMC5081607 DOI: 10.1073/pnas.1610554113

Abstract

The rise of inorganic-biological hybrid organisms for solar-to-chemical production has spurred mechanistic investigations into the dynamics of the biotic-abiotic interface to drive the development of next-generation systems. The model system, Moorella thermoacetica-cadmium sulfide (CdS), combines an inorganic semiconductor nanoparticle light harvester with an acetogenic bacterium to drive the photosynthetic reduction of CO

Keywords: CO2 reduction; biohybrid systems; catalysis; energy conversion; spectroscopy

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. J Phys Chem A. 2016 Mar 10;120(9):1479-87 - PubMed
  2. Biochem Soc Trans. 2016 Feb;44(1):315-28 - PubMed
  3. Annu Rev Biochem. 1996;65:537-61 - PubMed
  4. Acc Chem Res. 2011 Jan 18;44(1):1-13 - PubMed
  5. Biopolymers. 1990;30(13-14):1243-57 - PubMed
  6. J Am Chem Soc. 2013 Mar 6;135(9):3383-6 - PubMed
  7. J Biol Inorg Chem. 2009 Nov;14(8):1227-41 - PubMed
  8. Nat Chem Biol. 2011 Apr;7(4):222-7 - PubMed
  9. Nano Lett. 2015 May 13;15(5):3634-9 - PubMed
  10. Chem Rev. 2007 Oct;107(10):4304-30 - PubMed
  11. Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8529-36 - PubMed
  12. Nat Rev Microbiol. 2014 Dec;12(12):809-21 - PubMed
  13. Acta Biochim Biophys Sin (Shanghai). 2007 Aug;39(8):549-59 - PubMed
  14. Appl Environ Microbiol. 2011 May;77(9):2882-6 - PubMed
  15. Science. 2011 May 13;332(6031):805-9 - PubMed
  16. Phys Chem Chem Phys. 2015 Feb 28;17(8):5538-42 - PubMed
  17. Bioresour Technol. 2011 Jan;102(1):324-33 - PubMed
  18. Angew Chem Int Ed Engl. 2015 Mar 9;54(11):3259-66 - PubMed
  19. Biochim Biophys Acta. 2013 Aug-Sep;1827(8-9):949-57 - PubMed
  20. Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3534-9 - PubMed
  21. Front Microbiol. 2015 Jun 11;6:575 - PubMed
  22. J Biol Chem. 1999 Feb 5;274(6):3331-7 - PubMed
  23. MBio. 2015 Apr 21;6(2):null - PubMed
  24. Nat Commun. 2016 Jan 19;7:10413 - PubMed
  25. Chem Commun (Camb). 2011 Oct 14;47(38):10566-8 - PubMed
  26. Chem Rev. 2013 Aug 14;113(8):6621-58 - PubMed
  27. Curr Opin Biotechnol. 2010 Jun;21(3):271-6 - PubMed
  28. Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):2337-42 - PubMed
  29. Science. 2016 Jan 1;351(6268):74-7 - PubMed
  30. Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11461-6 - PubMed
  31. J Am Chem Soc. 2012 Jul 11;134(27):11108-11 - PubMed
  32. J Bacteriol. 1990 Aug;172(8):4464-71 - PubMed
  33. Phys Chem Chem Phys. 2014 Oct 28;16(40):22229-36 - PubMed
  34. J Bacteriol. 1982 May;150(2):702-9 - PubMed
  35. Environ Microbiol. 2008 Oct;10(10):2550-73 - PubMed
  36. J Am Chem Soc. 2010 Mar 31;132(12):4455-65 - PubMed
  37. J Am Chem Soc. 2014 Mar 19;136(11):4316-24 - PubMed

Publication Types