Display options
Share it on

Biomed Opt Express. 2016 Aug 19;7(9):3574-3584. doi: 10.1364/BOE.7.003574. eCollection 2016 Sep 01.

Direct visualization of functional heterogeneity in hepatobiliary metabolism using 6-CFDA as model compound.

Biomedical optics express

Chih-Ju Lin, Feng-Chieh Li, Yu-Yang Lee, Te-Yu Tseng, Wei-Liang Chen, Vladimir Hovhannisyan, Ning Kang, Nicholas G Horton, Shu-Jen Chiang, Chris Xu, Hsuan-Shu Lee, Chen-Yuan Dong

Affiliations

  1. Department of Physics, National Taiwan University, Taipei 106, Taiwan.
  2. School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA.
  3. Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; [email protected].
  4. Department of Physics, National Taiwan University, Taipei 106, Taiwan; Center for Optoelectronic Biomedicine, National Taiwan University, Taipei 106, Taiwan; Center for Quantum Science and Engineering, National Taiwan University, Taipei 106, Taiwan; [email protected].

PMID: 27699121 PMCID: PMC5030033 DOI: 10.1364/BOE.7.003574

Abstract

Hepatobiliary metabolism is one of the major functions of the liver. However, little is known of the relationship between the physiological location of the hepatocytes and their metabolic potential. By the combination of time-lapse multiphoton microscopy and first order kinetic constant image analysis, the hepatocellular metabolic rate of the model compound 6-carboxyfluorescein diacetate (6-CFDA) is quantified at the single cell level. We found that the mouse liver can be divided into three zones, each with distinct metabolic rate constants. The sinusoidal uptake coefficients k

Keywords: (190.0190) Nonlinear optics; (190.4180) Multiphoton processes

References

  1. Anat Rec. 1954 May;119(1):11-33 - PubMed
  2. Hepatology. 1986 May-Jun;6(3):444-9 - PubMed
  3. Hepatology. 1989 Jul;10(1):72-6 - PubMed
  4. Exp Anim. 2000 Jul;49(3):197-203 - PubMed
  5. Biol Cell. 2005 Apr;97(4):277-88 - PubMed
  6. Hepatology. 1988 Jul-Aug;8(4):822-30 - PubMed
  7. J Biomed Opt. 2007 Jan-Feb;12(1):014014 - PubMed
  8. Drug Metab Dispos. 2006 Oct;34(10 ):1756-63 - PubMed
  9. Int J Biochem Cell Biol. 2011 Feb;43(2):271-8 - PubMed
  10. Hoppe Seylers Z Physiol Chem. 1976 Mar;357(3):359-75 - PubMed
  11. Am J Physiol Heart Circ Physiol. 2005 Jan;288(1):H185-93 - PubMed
  12. Prog Histochem Cytochem. 2007;41(4):201-66 - PubMed
  13. Hepatology. 1987 Sep-Oct;7(5):849-55 - PubMed
  14. Life Sci. 2008 Feb 13;82(7-8):436-43 - PubMed
  15. FASEB J. 1997 Jan;11(1):15-8 - PubMed
  16. Leuk Res. 2004 Jun;28(6):619-22 - PubMed
  17. Clin Cancer Res. 1998 Jul;4(7):1727-36 - PubMed
  18. Annu Rev Nutr. 1996;16:179-203 - PubMed
  19. Am J Clin Nutr. 2009 Sep;90(3):857S-861S - PubMed
  20. Xenobiotica. 2012 Jan;42(1):28-45 - PubMed
  21. Am J Physiol Gastrointest Liver Physiol. 2009 May;296(5):G1091-7 - PubMed

Publication Types