Display options
Share it on

Front Hum Neurosci. 2016 Aug 02;10:367. doi: 10.3389/fnhum.2016.00367. eCollection 2016.

On the Effect of Sex on Prefrontal and Cerebellar Neurometabolites in Healthy Adults: An MRS Study.

Frontiers in human neuroscience

Dominique Endres, Ludger Tebartz van Elst, Bernd Feige, Stephan Backenecker, Kathrin Nickel, Anna Bubl, Thomas Lange, Irina Mader, Simon Maier, Evgeniy Perlov

Affiliations

  1. Section for Experimental Neuropsychiatry, Department for Psychiatry and Psychotherapy, University Medical Center Freiburg Freiburg, Germany.
  2. Department for Psychiatry and Psychotherapy, Saarland University Medical Center Homburg, Germany.
  3. Department for Radiology, Medical Physics, University Medical Center Freiburg Freiburg, Germany.
  4. Department of Neuroradiology, University Medical Center Freiburg Freiburg, Germany.

PMID: 27531975 PMCID: PMC4969301 DOI: 10.3389/fnhum.2016.00367

Abstract

In neuropsychiatric research, the aspects of sex have received increasing attention over the past decade. With regard to the neurometabolic differences in the prefrontal cortex and the cerebellum of both men and women, we performed a magnetic resonance spectroscopic (MRS) study of a large group of healthy subjects. For neurometabolic measurements, we used single-voxel proton MRS. The voxels of interest (VOI) were placed in the pregenual anterior cingulate cortex (pACC) and the left cerebellar hemisphere. Absolute quantification of creatine (Cre), total choline (t-Cho), glutamate and glutamine (Glx), N-acetylaspartate, and myo-inositol (mI) was performed. Thirty-three automatically matched ACCs and 31 cerebellar male-female pairs were statistically analyzed. We found no significant neurometabolic differences in the pACC region (Wilks' lambda: p = 0.657). In the left cerebellar region, we detected significant variations between the male and female groups (p = 0.001). Specifically, we detected significantly higher Cre (p = 0.005) and t-Cho (p = 0.000) levels in men. Additionally, males tended to have higher Glx and mI concentrations. This is the first study to report neurometabolic sex differences in the cerebellum. The effects of sexual hormones might have influenced our findings. Our data indicates the importance of adjusting for the confounding effects of sex in MRS studies.

Keywords: MR spectroscopy; cerebellum; choline; creatine; sex

References

  1. Lancet. 2005 Jul 16-22;366(9481):237-48 - PubMed
  2. AJNR Am J Neuroradiol. 2005 Jun-Jul;26(6):1439-45 - PubMed
  3. J Psychiatr Res. 2010 Oct;44(14):938-43 - PubMed
  4. AJNR Am J Neuroradiol. 1998 Jan;19(1):65-71 - PubMed
  5. Neurobiol Aging. 2005 May;26(5):665-72 - PubMed
  6. JAMA Psychiatry. 2015 Dec;72(12):1199-210 - PubMed
  7. Acad Radiol. 2009 Dec;16(12):1493-501 - PubMed
  8. NMR Biomed. 2001 Jun;14(4):260-4 - PubMed
  9. Aust N Z J Psychiatry. 2002 Feb;36(1):31-43 - PubMed
  10. J Psychiatr Res. 2007 Dec;41(11):934-41 - PubMed
  11. Psychiatry Res. 2001 Feb 28;106(1):47-57 - PubMed
  12. Mol Psychiatry. 2014 Dec;19(12):1251 - PubMed
  13. J Magn Reson Imaging. 2013 Dec;38(6):1480-7 - PubMed
  14. Acta Neurol Scand. 1995 May;91(5):335-45 - PubMed
  15. J Clin Psychiatry. 1998;59 Suppl 20:22-33;quiz 34-57 - PubMed
  16. Magn Reson Imaging. 2008 Jun;26(5):667-75 - PubMed
  17. Eur Arch Psychiatry Clin Neurosci. 2013 Nov;263 Suppl 2:S189-96 - PubMed
  18. Trends Cogn Sci. 2000 Jun;4(6):215-222 - PubMed
  19. J Neuroophthalmol. 2005 Sep;25(3):217-26 - PubMed
  20. Magn Reson Imaging. 2009 Jan;27(1):142-5 - PubMed
  21. Eur J Radiol. 2008 Aug;67(2):218-29 - PubMed
  22. Brain Cogn. 2010 Feb;72(1):46-55 - PubMed
  23. Biochem Pharmacol. 1987 Nov 15;36(22):3781-8 - PubMed
  24. Psychiatry Res. 2014 Aug 30;223(2):67-74 - PubMed
  25. Eur J Radiol. 2008 Aug;67(2):185-93 - PubMed
  26. Front Behav Neurosci. 2015 Sep 28;9:242 - PubMed
  27. Mol Psychiatry. 2014 Dec;19(12):1314-25 - PubMed
  28. Neuroscience. 2004;123(4):1053-8 - PubMed
  29. World J Biol Psychiatry. 2009;10(4 Pt 2):355-65 - PubMed
  30. Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):823-8 - PubMed
  31. Ann Neurol. 2003;54 Suppl 6:S25-31 - PubMed
  32. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2014 Sep;57(9):1092-8 - PubMed
  33. Brain. 1998 Apr;121 ( Pt 4):561-79 - PubMed
  34. Anat Rec. 2001 Apr;265(2):54-84 - PubMed
  35. Magn Reson Med. 1993 Dec;30(6):672-9 - PubMed
  36. Neuroimage. 2005 Jul 1;26(3):839-51 - PubMed
  37. Biol Psychiatry. 2014 Sep 15;76(6):486-94 - PubMed
  38. Magn Reson Med. 1998 Jan;39(1):53-60 - PubMed
  39. AJNR Am J Neuroradiol. 2001 Jun-Jul;22(6):1161-7 - PubMed
  40. Proc Biol Sci. 1999 Jul 7;266(1426):1375-9 - PubMed
  41. Biol Psychiatry. 2011 Feb 15;69(4):374-80 - PubMed
  42. Biol Psychiatry. 2016 Dec 15;80(12 ):905-915 - PubMed
  43. Ann N Y Acad Sci. 2001 May;935:107-17 - PubMed
  44. Nature. 1995 Feb 16;373(6515):607-9 - PubMed
  45. J Steroid Biochem. 1990 Feb;35(2):157-72 - PubMed
  46. NMR Biomed. 2000 May;13(3):129-53 - PubMed
  47. J Neuropsychiatry Clin Neurosci. 2004 Summer;16(3):367-78 - PubMed
  48. Nat Rev Neurosci. 2008 Apr;9(4):304-13 - PubMed
  49. Neuro Endocrinol Lett. 2011;32(5):683-7 - PubMed
  50. Neuroimage. 2000 May;11(5 Pt 1):554-63 - PubMed

Publication Types