Display options
Share it on

Sci Rep. 2016 Aug 08;6:30915. doi: 10.1038/srep30915.

Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size.

Scientific reports

John D Roehling, Derya Baran, Joseph Sit, Thaer Kassar, Tayebeh Ameri, Tobias Unruh, Christoph J Brabec, Adam J Moulé

Affiliations

  1. Material Science Division, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, USA.
  2. i-MEET (Institute Materials for Electronics and Energy Technology), Friedrich-Alexander, University Erlangen-Nurnberg, Martensstrasse 7, D-91058 Erlangen, Germany.
  3. Department of Chemical Engineering and Material Science, One Shields Ave., University of California, Davis, Davis,CA, USA.
  4. LKS (Chair for Crystallography and Structural Physics), Friedrich-Alexander University Erlangen-Nurnberg, Staudtstrasse 3, D-91058 Erlangen, Germany.

PMID: 27498880 PMCID: PMC4976328 DOI: 10.1038/srep30915

Abstract

High efficiency polymer:fullerene photovoltaic device layers self-assemble with hierarchical features from ångströms to 100's of nanometers. The feature size, shape, composition, orientation, and order all contribute to device efficiency and are simultaneously difficult to study due to poor contrast between carbon based materials. This study seeks to increase device efficiency and simplify morphology measurements by replacing the typical fullerene acceptor with endohedral fullerene Lu3N@PC80BEH. The metal atoms give excellent scattering contrast for electron beam and x-ray experiments. Additionally, Lu3N@PC80BEH has a lower electron affinity than standard fullerenes, which can raise the open circuit voltage of photovoltaic devices. Electron microscopy techniques are used to produce a detailed account of morphology evolution in mixtures of Lu3N@PC80BEH with the record breaking donor polymer, PTB7 and coated using solvent mixtures. We demonstrate that common solvent additives like 1,8-diiodooctane or chloronapthalene do not improve the morphology of endohedral fullerene devices as expected. The poor device performance is attributed to the lack of mutual miscibility between this particular polymer:fullerene combination and to co-crystallization of Lu3N@PC80BEH with 1,8-diiodooctane. This negative result explains why solvent additives mixtures are not necessarily a morphology cure-all.

References

  1. ACS Nano. 2011 Oct 25;5(10):8248-57 - PubMed
  2. Sci Rep. 2015 Feb 06;5:8286 - PubMed
  3. J Chem Phys. 2014 Jun 7;140(21):214905 - PubMed
  4. Chemistry. 2002 Oct 4;8(19):4528-35 - PubMed
  5. J Am Chem Soc. 2008 Mar 19;130(11):3619-23 - PubMed
  6. Nat Commun. 2015 Feb 06;6:6229 - PubMed
  7. J Am Chem Soc. 2011 Jun 15;133(23):9088-94 - PubMed
  8. Nat Commun. 2013;4:1446 - PubMed
  9. Nat Mater. 2009 Mar;8(3):208-12 - PubMed
  10. ACS Appl Mater Interfaces. 2013 Feb;5(3):861-8 - PubMed
  11. Nat Commun. 2013;4:2867 - PubMed
  12. Ultramicroscopy. 2014 Dec;147:137-48 - PubMed
  13. ACS Nano. 2011 Nov 22;5(11):8579-90 - PubMed
  14. Nat Commun. 2014 Nov 10;5:5293 - PubMed
  15. Acc Chem Res. 2009 Nov 17;42(11):1691-9 - PubMed
  16. J Phys Chem B. 2014 Jan 9;118(1):344-50 - PubMed
  17. Ultramicroscopy. 2015 Oct;157:35-47 - PubMed
  18. Science. 2011 Apr 15;332(6027):293 - PubMed
  19. Ultramicroscopy. 2013 Apr;127:40-7 - PubMed
  20. Adv Mater. 2015 Jul 8;27(26):3868-73 - PubMed
  21. ACS Nano. 2011 Jun 28;5(6):4756-68 - PubMed
  22. Adv Mater. 2013 Aug 7;25(29):3973-8 - PubMed
  23. Nat Mater. 2013 Jul;12(7):628-33 - PubMed
  24. J Struct Biol. 1996 Jan-Feb;116(1):71-6 - PubMed

Publication Types