Display options
Share it on

Nat Commun. 2016 Sep 26;7:12978. doi: 10.1038/ncomms12978.

Atomically thin quantum light-emitting diodes.

Nature communications

Carmen Palacios-Berraquero, Matteo Barbone, Dhiren M Kara, Xiaolong Chen, Ilya Goykhman, Duhee Yoon, Anna K Ott, Jan Beitner, Kenji Watanabe, Takashi Taniguchi, Andrea C Ferrari, Mete Atatüre

Affiliations

  1. Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK.
  2. Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK.
  3. Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0034, Japan.

PMID: 27667022 PMCID: PMC5052681 DOI: 10.1038/ncomms12978

Abstract

Transition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emitting diode structure comprising single-layer graphene, thin hexagonal boron nitride and transition metal dichalcogenide mono- and bi-layers. Photon correlation measurements are used to confirm the single-photon nature of the spectrally sharp emission. These results present the transition metal dichalcogenide family as a platform for hybrid, broadband, atomically precise quantum photonics devices.

References

  1. Nat Nanotechnol. 2015 Jun;10(6):497-502 - PubMed
  2. Nature. 2010 Jun 3;465(7298):594-7 - PubMed
  3. Nat Nanotechnol. 2015 Jun;10(6):503-6 - PubMed
  4. Nat Nanotechnol. 2013 Sep;8(9):634-8 - PubMed
  5. Nat Commun. 2015 Jul 23;6:7783 - PubMed
  6. Nat Mater. 2004 Jun;3(6):404-9 - PubMed
  7. ACS Nano. 2013 Jan 22;7(1):791-7 - PubMed
  8. Nat Nanotechnol. 2015 Jun;10(6):491-6 - PubMed
  9. Nat Nanotechnol. 2014 Apr;9(4):262-7 - PubMed
  10. Science. 2002 Jan 4;295(5552):102-5 - PubMed
  11. ACS Nano. 2012 Jan 24;6(1):74-80 - PubMed
  12. Nat Nanotechnol. 2013 Apr;8(4):235-46 - PubMed
  13. Nature. 2000 Jun 22;405(6789):926-9 - PubMed
  14. Nat Nanotechnol. 2016 Jan;11(1):37-41 - PubMed
  15. Nat Mater. 2015 Mar;14(3):301-6 - PubMed
  16. Nat Nanotechnol. 2015 Jun;10(6):507-11 - PubMed
  17. Nano Lett. 2015 Nov 11;15(11):7567-73 - PubMed
  18. Nat Commun. 2012 Jan 17;3:628 - PubMed
  19. Nat Nanotechnol. 2014 Apr;9(4):268-72 - PubMed
  20. Nat Nanotechnol. 2014 Oct;9(10):780-93 - PubMed
  21. Nat Nanotechnol. 2014 Apr;9(4):257-61 - PubMed
  22. Phys Rev Lett. 2012 May 18;108(20):206401 - PubMed
  23. Nature. 2011 Jun 2;474(7349):64-7 - PubMed
  24. ACS Nano. 2010 Feb 23;4(2):803-10 - PubMed
  25. Nanoscale. 2015 Mar 21;7(11):4598-810 - PubMed
  26. Nano Lett. 2007 Sep;7(9):2711-7 - PubMed
  27. Rev Sci Instrum. 2011 Jul;82(7):071101 - PubMed
  28. Nat Commun. 2015 Nov 17;6:8831 - PubMed
  29. Science. 2007 Nov 30;318(5855):1430-3 - PubMed

Publication Types