Display options
Share it on

Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:646-650. doi: 10.1109/ISBI.2016.7493350.

APPLYING SPARSE CODING TO SURFACE MULTIVARIATE TENSOR-BASED MORPHOMETRY TO PREDICT FUTURE COGNITIVE DECLINE.

Proceedings. IEEE International Symposium on Biomedical Imaging

Jie Zhang, Cynthia Stonnington, Qingyang Li, Jie Shi, Robert J Bauer, Boris A Gutman, Kewei Chen, Eric M Reiman, Paul M Thompson, Jieping Ye, Yalin Wang

Affiliations

  1. School of Computing, Informatics, and Decision Systems Engineering, Arizona State Univ., Tempe, AZ.
  2. Dept. of Psychiatry and Psychology, Mayo Clinic Arizona, Scottsdale, AZ.
  3. Banner Alzheimer's Institute, Phoenix, AZ.
  4. Imaging Genetics Center, Institute for Neuroimaging and Informatics, Univ.of Southern California, Marina del Rey, CA.
  5. Dept. of Computational Medicine and Bioinformatics, Univ. of Michigan, Ann Arbor, MI.

PMID: 27499829 PMCID: PMC4974012 DOI: 10.1109/ISBI.2016.7493350

Abstract

Alzheimer's disease (AD) is a progressive brain disease. Accurate diagnosis of AD and its prodromal stage, mild cognitive impairment, is crucial for clinical trial design. There is also growing interests in identifying brain imaging biomarkers that help evaluate AD risk presymptomatically. Here, we applied a recently developed multivariate tensor-based morphometry (mTBM) method to extract features from hippocampal surfaces, derived from anatomical brain MRI. For such surface-based features, the feature dimension is usually much larger than the number of subjects. We used dictionary learning and sparse coding to effectively reduce the feature dimensions. With the new features, an Adaboost classifier was employed for binary group classification. In tests on publicly available data from the Alzheimers Disease Neuroimaging Initiative, the new framework outperformed several standard imaging measures in classifying different stages of AD. The new approach combines the efficiency of sparse coding with the sensitivity of surface mTBM, and boosts classification performance.

Keywords: Alzheimer’s disease; dictionary learning and sparse coding; multivariate tensor-based morphometry

References

  1. Neuroimage. 2013 Jul 1;74:209-30 - PubMed
  2. Neuroimage. 2012 Aug 15;62(2):782-90 - PubMed
  3. Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4872-7 - PubMed
  4. Magn Reson Med. 2006 Aug;56(2):411-21 - PubMed
  5. IEEE Trans Med Imaging. 2008 Aug;27(8):1143-51 - PubMed
  6. Neuroimage. 2013 Sep;78:111-34 - PubMed
  7. Neuroimage. 2011 Jun 15;56(4):1993-2010 - PubMed
  8. Neuroimage. 2010 Feb 1;49(3):2141-57 - PubMed
  9. Hippocampus. 2009 Jun;19(6):572-8 - PubMed
  10. Neuroimage. 2004 Aug;22(4):1754-66 - PubMed
  11. IEEE Trans Med Imaging. 2007 Jan;26(1):46-57 - PubMed
  12. Alzheimers Dement. 2015 Jun;11(6):e1-120 - PubMed
  13. Neuroimage. 2010 Jul 15;51(4):1405-13 - PubMed
  14. Neuroimage. 2010 Nov 15;53(3):1147-59 - PubMed
  15. IEEE Trans Med Imaging. 1999 Oct;18(10 ):851-65 - PubMed
  16. J Comput Assist Tomogr. 1996 Jan-Feb;20(1):88-97 - PubMed
  17. Vision Res. 1997 Dec;37(23):3311-25 - PubMed
  18. Neuroimage. 2003 Mar;18(3):769-88 - PubMed
  19. IEEE Trans Pattern Anal Mach Intell. 2006 Oct;28(10):1619-30 - PubMed
  20. BMJ. 2009 Feb 05;338:b158 - PubMed
  21. Neuroimage. 2011 Jun 1;56(3):907-22 - PubMed

Publication Types

Grant support