Display options
Share it on

J Pathol Clin Res. 2015 Jun 03;1(4):252-63. doi: 10.1002/cjp2.20. eCollection 2015 Oct.

Regulation of macroautophagy in amiodarone-induced pulmonary fibrosis.

The journal of pathology. Clinical research

Poornima Mahavadi, Lars Knudsen, Shalini Venkatesan, Ingrid Henneke, Jan Hegermann, Christoph Wrede, Matthias Ochs, Saket Ahuja, Shashi Chillappagari, Clemens Ruppert, Werner Seeger, Martina Korfei, Andreas Guenther

Affiliations

  1. Department of Internal MedicineJustus-Liebig-UniversityGiessenGermany; Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL)GiessenGermany.
  2. Institute of Functional and Applied Anatomy, Hannover Medical SchoolHannoverGermany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL)HannoverGermany; REBIRTH Cluster of ExcellenceHannoverGermany.
  3. Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL)GiessenGermany; Department of Medicine, Pulmonary Critical CarePhilipps-Universität MarburgBaldingerstrasse 135043MarburgGermany.
  4. Department of Internal MedicineJustus-Liebig-UniversityGiessenGermany; Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL)GiessenGermany; Member of the European IPF Network.
  5. Department of Internal MedicineJustus-Liebig-UniversityGiessenGermany; Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL)GiessenGermany; Member of the European IPF Network; Lung Clinic Waldhof-ElgershausenGreifensteinGermany.

PMID: 27499909 PMCID: PMC4939895 DOI: 10.1002/cjp2.20

Abstract

Amiodarone (AD) is an iodinated benzofuran derivative, especially known for its antiarrhythmic properties. It exerts serious side-effects even in patients receiving low doses. AD is well-known to induce apoptosis of type II alveolar epithelial cells (AECII), a mechanism that has been suggested to play an important role in AD-induced lung fibrosis. The precise molecular mechanisms underlying this disease are, however, still unclear. Because of its amphiphilic nature, AD becomes enriched in the lysosomal compartments, affecting the general functions of these organelles. Hence, in this study, we aimed to assess the role of autophagy, a lysosome-dependent homeostasis mechanism, in driving AECII apoptosis in response to AD. In vitro, AD-treated MLE12 and primary AECII cells showed increased proSP-C and LC3B positive vacuolar structures and underwent LC3B-dependent apoptosis. In addition, AD-induced autophagosome-lysosome fusion and increased autophagy flux were observed. In vivo, in C57BL/6 mice, LC3B was localised at the limiting membrane of lamellar bodies, which were closely connected to the autophagosomal structures in AECIIs. Our data suggest that AD causes activation of macroautophagy in AECIIs and extensive autophagy-dependent apoptosis of alveolar epithelial cells. Targeting the autophagy pathway may therefore represent an attractive treatment modality in AD-induced lung fibrosis.

Keywords: LC3B; alveolar epithelial cells; amiodarone; apoptosis; autophagy; lamellar bodies

References

  1. Drug Metab Dispos. 2006 Jan;34(1):43-50 - PubMed
  2. Br J Clin Pharmacol. 1987 Aug;24(2):237-9 - PubMed
  3. Pharmacol Toxicol. 2003 Feb;92(2):81-7 - PubMed
  4. Chest. 1997 Oct;112(4):1068-74 - PubMed
  5. Am J Physiol Lung Cell Mol Physiol. 2000 May;278(5):L1039-44 - PubMed
  6. Toxicol Sci. 2013 Nov;136(1):193-204 - PubMed
  7. Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18880-5 - PubMed
  8. J Pharmacol Exp Ther. 2003 Nov;307(2):615-25 - PubMed
  9. Intern Med. 2006;45(22):1303-7 - PubMed
  10. J Cardiovasc Pharmacol Ther. 1997 Jan;2(1):53-60 - PubMed
  11. Acta Pharmacol Sin. 2013 May;34(5):595-9 - PubMed
  12. Br J Pharmacol. 2009 Aug;157(8):1531-40 - PubMed
  13. Biochem Pharmacol. 2011 Feb 1;81(3):432-41 - PubMed
  14. J Pharmacol Exp Ther. 1989 Oct;251(1):272-8 - PubMed
  15. Basic Clin Pharmacol Toxicol. 2007 Jan;100(1):59-66 - PubMed
  16. PLoS One. 2011 Jan 26;6(1):e16482 - PubMed
  17. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18511-6 - PubMed
  18. J Pharmacol Exp Ther. 2001 Sep;298(3):1280-9 - PubMed
  19. Toxicol Sci. 2014 Nov;142(1):285-97 - PubMed
  20. J Cell Sci. 2005 Jul 15;118(Pt 14):3091-102 - PubMed
  21. Chest. 2003 Feb;123(2):646-51 - PubMed
  22. Am J Respir Crit Care Med. 2010 Jul 15;182(2):207-19 - PubMed
  23. PLoS One. 2012;7(6):e39488 - PubMed
  24. Chest. 2001 Jul;120(1):275-82 - PubMed
  25. Biochem Pharmacol. 2011 Nov 1;82(9):1234-49 - PubMed
  26. Mol Biol Cell. 2000 Jan;11(1):255-68 - PubMed
  27. Autophagy. 2008 May;4(4):510-2 - PubMed
  28. Respiration. 2006;73(2):248-9 - PubMed
  29. Am J Physiol Lung Cell Mol Physiol. 2004 Jul;287(1):L46-51 - PubMed
  30. Circulation. 2014 Dec 2;130(23):2071-104 - PubMed
  31. Autophagy. 2012 Apr;8(4):445-544 - PubMed
  32. Nature. 2008 Feb 28;451(7182):1069-75 - PubMed
  33. FEBS J. 2009 Nov;276(21):6084-96 - PubMed
  34. Endocrinology. 1994 May;134(5):2277-82 - PubMed
  35. Expert Rev Respir Med. 2010 Oct;4(5):573-84 - PubMed
  36. Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):19023-8 - PubMed
  37. N Engl J Med. 2013 May 9;368(19):1845-6 - PubMed
  38. Acta Pharmacol Sin. 2013 May;34(5):585-94 - PubMed
  39. Biochem Pharmacol. 2003 Apr 1;65(7):1115-28 - PubMed
  40. PLoS One. 2014 Feb 21;9(2):e89629 - PubMed
  41. J Biol Chem. 2010 Apr 9;285(15):11061-7 - PubMed
  42. J Formos Med Assoc. 2007 May;106(5):411-7 - PubMed
  43. Science. 2000 Dec 1;290(5497):1717-21 - PubMed
  44. J Pharmacol Exp Ther. 2011 Feb;336(2):551-9 - PubMed

Publication Types