Display options
Share it on

Front Bioeng Biotechnol. 2016 Sep 09;4:71. doi: 10.3389/fbioe.2016.00071. eCollection 2016.

The Quest for Anti-inflammatory and Anti-infective Biomaterials in Clinical Translation.

Frontiers in bioengineering and biotechnology

May Griffith, Mohammad M Islam, Joel Edin, Georgia Papapavlou, Oleksiy Buznyk, Hirak K Patra

Affiliations

  1. Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden; Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden; Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada.
  2. Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden; Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden.
  3. Department of Clinical and Experimental Medicine (IKE), Linköping University , Linköping , Sweden.
  4. Department of Eye Burns, Ophthalmic Reconstructive Surgery, Keratoplasty and Keratoprosthesis, Filatov Institute of Eye diseases and Tissue Therapy of the NAMS of Ukraine , Odessa , Ukraine.

PMID: 27668213 PMCID: PMC5016531 DOI: 10.3389/fbioe.2016.00071

Abstract

Biomaterials are now being used or evaluated clinically as implants to supplement the severe shortage of available human donor organs. To date, however, such implants have mainly been developed as scaffolds to promote the regeneration of failing organs due to old age or congenital malformations. In the real world, however, infection or immunological issues often compromise patients. For example, bacterial and viral infections can result in uncontrolled immunopathological damage and lead to organ failure. Hence, there is a need for biomaterials and implants that not only promote regeneration but also address issues that are specific to compromised patients, such as infection and inflammation. Different strategies are needed to address the regeneration of organs that have been damaged by infection or inflammation for successful clinical translation. Therefore, the real quest is for multifunctional biomaterials with combined properties that can combat infections, modulate inflammation, and promote regeneration at the same time. These strategies will necessitate the inclusion of methodologies for management of the cellular and signaling components elicited within the local microenvironment. In the development of such biomaterials, strategies range from the inclusion of materials that have intrinsic anti-inflammatory properties, such as the synthetic lipid polymer, 2-methacryloyloxyethyl phosphorylcholine (MPC), to silver nanoparticles that have antibacterial properties, to inclusion of nano- and micro-particles in biomaterials composites that deliver active drugs. In this present review, we present examples of both kinds of materials in each group along with their pros and cons. Thus, as a promising next generation strategy to aid or replace tissue/organ transplantation, an integrated smart programmable platform is needed for regenerative medicine applications to create and/or restore normal function at the cell and tissue levels. Therefore, now it is of utmost importance to develop integrative biomaterials based on multifunctional biopolymers and nanosystem for their practical and successful clinical translation.

Keywords: anti-infective; anti-inflammatory; biomaterials; clinical translation

References

  1. Annu Rev Med. 2001;52:443-51 - PubMed
  2. Glycobiology. 2003 Jun;13(6):29R-40R - PubMed
  3. N Engl J Med. 2003 May 15;348(20):1948-51 - PubMed
  4. Biomaterials. 2004 Aug;25(18):4383-91 - PubMed
  5. J Gastroenterol. 2004;39(4):346-54 - PubMed
  6. N Engl J Med. 2004 Aug 19;351(8):751-9 - PubMed
  7. Curr Med Chem. 2004 Sep;11(18):2399-419 - PubMed
  8. J Nanobiotechnology. 2005 Jun 29;3:6 - PubMed
  9. Chem Biol. 2005 Oct;12(10):1127-35 - PubMed
  10. Acta Biomater. 2005 Nov;1(6):691-703 - PubMed
  11. Bioorg Med Chem. 2006 Sep 1;14(17):5989-94 - PubMed
  12. J Ind Microbiol Biotechnol. 2006 Jul;33(7):627-34 - PubMed
  13. Biotechnol Appl Biochem. 1990 Jun;12(3):315-24 - PubMed
  14. Biomaterials. 2007 Apr;28(10):1778-86 - PubMed
  15. J Bone Joint Surg Am. 2007 Sep;89(9):2044-7 - PubMed
  16. Semin Immunol. 2008 Apr;20(2):86-100 - PubMed
  17. J Am Chem Soc. 2008 Jun 4;130(22):6896-7 - PubMed
  18. J Zhejiang Univ Sci B. 2008 Jun;9(6):506-10 - PubMed
  19. Nat Nanotechnol. 2007 Aug;2(8):469-78 - PubMed
  20. Biomaterials. 2009 Feb;30(5):730-5 - PubMed
  21. Chemistry. 2009 Sep 28;15(38):9874-88 - PubMed
  22. Biomaterials. 2010 Jan;31(2):308-14 - PubMed
  23. J Nanobiotechnology. 2010 Jan 20;8:1 - PubMed
  24. Biomaterials. 2010 May;31(14):3997-4008 - PubMed
  25. J Med Invest. 2010 Feb;57(1-2):26-34 - PubMed
  26. Burns. 2010 Sep;36(6):751-8 - PubMed
  27. Bioorg Med Chem Lett. 2010 May 1;20(9):2718-21 - PubMed
  28. Small. 2010 May 7;6(9):1044-50 - PubMed
  29. Curr HIV Res. 2010 Jul;8(5):396-404 - PubMed
  30. Biomaterials. 2010 Sep;31(25):6363-77 - PubMed
  31. J Nanobiotechnology. 2010 Aug 18;8:19 - PubMed
  32. Environ Sci Technol. 2011 Feb 15;45(4):1177-83 - PubMed
  33. Food Chem Toxicol. 2011 Aug;49(8):1745-52 - PubMed
  34. Nanomedicine. 2012 Jan;8(1):37-45 - PubMed
  35. J Nanomed Nanotechnol. 2011 Apr 1;2(2):1-9 - PubMed
  36. J Virol Methods. 2011 Dec;178(1-2):137-42 - PubMed
  37. Eur J Pharm Biopharm. 2012 Jan;80(1):103-12 - PubMed
  38. Biomaterials. 2012 Jan;33(1):304-16 - PubMed
  39. Biomaterials. 2012 Feb;33(5):1303-14 - PubMed
  40. Appl Microbiol Biotechnol. 2012 Jan;93(1):71-82 - PubMed
  41. Bioconjug Chem. 2012 Apr 18;23(4):814-25 - PubMed
  42. Pharmacol Rep. 2012;64(2):282-92 - PubMed
  43. Adv Drug Deliv Rev. 2013 Apr;65(4):581-603 - PubMed
  44. Orthopedics. 2012 Aug 1;35(8):679-81 - PubMed
  45. Sci Transl Med. 2012 Sep 26;4(153):153rv10 - PubMed
  46. Nanotoxicology. 2014 Feb;8(1):1-16 - PubMed
  47. Biochem Biophys Res Commun. 2013 Jan 11;430(2):519-22 - PubMed
  48. Int J Nanomedicine. 2012;7:6003-9 - PubMed
  49. Nanoscale Res Lett. 2013 Feb 20;8(1):93 - PubMed
  50. Small. 2013 Aug 26;9(16):2735-46 - PubMed
  51. J Cell Mol Med. 2013 Apr;17(4):518-30 - PubMed
  52. Biomatter. 2012 Oct-Dec;2(4):226-36 - PubMed
  53. J Biomed Mater Res A. 2014 May;102(5):1527-36 - PubMed
  54. Int J Nanomedicine. 2013;8:4303-14 - PubMed
  55. J Cell Physiol. 2014 Aug;229(8):984-9 - PubMed
  56. Genet Mol Res. 2014 Mar 19;13(3):7022-8 - PubMed
  57. J Biomed Mater Res A. 2015 Feb;103(2):555-63 - PubMed
  58. Biomacromolecules. 2014 Jul 14;15(7):2359-68 - PubMed
  59. Mater Sci Eng C Mater Biol Appl. 2014 Jun 1;39:177-85 - PubMed
  60. Ophthalmology. 2014 Oct;121(10):1871-6 - PubMed
  61. Transl Vis Sci Technol. 2014 May 29;3(3):4 - PubMed
  62. Beilstein J Org Chem. 2014 Jun 12;10:1339-46 - PubMed
  63. J Biol Chem. 2015 Jan 2;290(1):529-43 - PubMed
  64. Mediators Inflamm. 2014;2014:805841 - PubMed
  65. Molecules. 2015 Jan 07;20(1):738-53 - PubMed
  66. Polymers (Basel). 2014 Sep 29;6(10):2526-2551 - PubMed
  67. Clin Transl Sci. 2015 Oct;8(5):558-62 - PubMed
  68. IET Nanobiotechnol. 2015 Jun;9(3):107-13 - PubMed
  69. Clin Ophthalmol. 2015 Jul 16;9:1321-35 - PubMed
  70. Nanoscale. 2015 Nov 28;7(44):18789-98 - PubMed
  71. ACS Appl Mater Interfaces. 2015 Nov 18;7(45):25487-94 - PubMed
  72. J Appl Microbiol. 2016 Mar;120(3):527-42 - PubMed
  73. Nanoscale. 2016 Mar 28;8(12):6484-9 - PubMed
  74. Retin Cases Brief Rep. 2017 Winter;11(1):51-55 - PubMed
  75. Trends Biotechnol. 2016 Dec;34(12):945-948 - PubMed
  76. Materials (Basel). 2014 May 19;7(5):3946-3955 - PubMed
  77. Materials (Basel). 2013 Jun 05;6(6):2295-2350 - PubMed
  78. Cell Transplant. 1995 Sep-Oct;4(5):455-77 - PubMed

Publication Types