Display options
Share it on

Sci Rep. 2016 Aug 18;6:31569. doi: 10.1038/srep31569.

Giant and Tunable Anisotropy of Nanoscale Friction in Graphene.

Scientific reports

Clara M Almeida, Rodrigo Prioli, Benjamin Fragneaud, Luiz Gustavo Cançado, Ricardo Paupitz, Douglas S Galvão, Marcelo De Cicco, Marcos G Menezes, Carlos A Achete, Rodrigo B Capaz

Affiliations

  1. Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO), Campus Xerém, Av. Nossa Senhora das Graças 50, Xerém, Duque de Caxias, RJ, 25250-020, Brazil.
  2. Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, R. Marques de São Vicente 225, Rio de Janeiro, RJ, 22453-900, Brazil.
  3. Departamento de Física, Instituto de Ciências Exatas, Cidade Universitária, Juiz de Fora, MG, 36036-900, Brazil.
  4. Departamento de Física, Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Av. Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
  5. Departamento de Física, Universidade Estadual Paulista, Campus Rio Claro, Av. 24A 1515, Rio Claro, SP, 13506-900, Brazil.
  6. Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, R. Sérgio Buarque de Holanda, 777, Cidade Universitária, Campinas, SP, 13083-859, Brazil.
  7. Instituto de Física, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149-Cidade Universitária, Rio de Janeiro - RJ, 21941-590, Brazil.

PMID: 27534691 PMCID: PMC4989147 DOI: 10.1038/srep31569

Abstract

The nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction forces in graphene are highly dependent on the scanning direction: under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.

References

  1. Science. 2010 Apr 2;328(5974):76-80 - PubMed
  2. Phys Rev Lett. 1996 Apr 1;76(14):2511-2514 - PubMed
  3. Science. 2005 Aug 26;309(5739):1354-6 - PubMed
  4. Nano Lett. 2012 Dec 12;12(12):6043-8 - PubMed
  5. Science. 1998 Apr 10;280(5361):273-5 - PubMed
  6. Phys Rev B Condens Matter. 1996 Jul 15;54(3):2138-2149 - PubMed
  7. Phys Rev Lett. 2013 Sep 20;111(12):126103 - PubMed
  8. ACS Nano. 2010 Jun 22;4(6):3131-8 - PubMed
  9. Nature. 2009 Feb 26;457(7233):1116-9 - PubMed
  10. Phys Rev Lett. 2009 Feb 27;102(8):086102 - PubMed
  11. Science. 2011 Jul 29;333(6042):607-10 - PubMed
  12. Phys Rev Lett. 2004 Mar 26;92(12):126101 - PubMed
  13. Phys Rev Lett. 2006 Nov 3;97(18):187401 - PubMed
  14. Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10451-3 - PubMed

Publication Types