Display options
Share it on

PLoS One. 2016 Sep 26;11(9):e0162827. doi: 10.1371/journal.pone.0162827. eCollection 2016.

Critical Involvement of Environmental Carbon Dioxide Fixation to Drive Wax Ester Fermentation in Euglena.

PloS one

Adchara Padermshoke, Takumi Ogawa, Kazuki Nishio, Masami Nakazawa, Masatoshi Nakamoto, Atsushi Okazawa, Shigehiko Kanaya, Masanori Arita, Daisaku Ohta

Affiliations

  1. Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan.
  2. Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
  3. Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan.
  4. RIKEN Center for Sustainable Resource Science, Tsurumi, Kanagawa, Japan.

PMID: 27669566 PMCID: PMC5036851 DOI: 10.1371/journal.pone.0162827

Abstract

Accumulation profiles of wax esters in Euglena gracilis Z were studied under several environmental conditions. The highest amount of total wax esters accumulated under hypoxia in the dark, and C28 (myristyl-myristate, C14:0-C14:0) was prevalent among all conditions investigated. The wax ester production was almost completely suppressed under anoxia in the light, and supplying exogenous inorganic carbon sources restored wax ester fermentation, indicating the need for external carbon sources for the wax ester fermentation. 13C-labeling experiments revealed specific isotopic enrichment in the odd-numbered fatty acids derived from wax esters, indicating that the exogenously-supplied CO2 was incorporated into wax esters via the propionyl-CoA pathway through the reverse tricarboxylic acid (TCA) cycle. The addition of 3-mercaptopicolinic acid, a phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, significantly affected the incorporation of 13C into citrate and malate as the biosynthetic intermediates of the odd-numbered fatty acids, suggesting the involvement of PEPCK reaction to drive wax ester fermentation. Additionally, the 13C-enrichment pattern of succinate suggested that the CO2 assimilation might proceed through alternative pathways in addition to the PEPCK reaction. The current results indicate that the mechanisms of anoxic CO2 assimilation are an important target to reinforce wax ester fermentation in Euglena.

Conflict of interest statement

The authors have declared that no competing interests exist.

References

  1. Cell Rep. 2014 Jun 12;7(5):1679-90 - PubMed
  2. Lipids. 2015 May;50(5):483-92 - PubMed
  3. Gene. 2007 Mar 15;389(2):136-45 - PubMed
  4. Plant Physiol. 1971 May;47(5):635-9 - PubMed
  5. Ann N Y Acad Sci. 1953 Oct 14;56(5):890-900 - PubMed
  6. Planta. 1971 Jun;100(2):124-30 - PubMed
  7. Plant Physiol. 1988 Feb;86(2):457-62 - PubMed
  8. Biochim Biophys Acta. 2005 Dec 20;1710(2-3):113-21 - PubMed
  9. Microbiol Mol Biol Rev. 2012 Jun;76(2):444-95 - PubMed
  10. Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19611-6 - PubMed
  11. Appl Microbiol Biotechnol. 2008 Jul;79(5):707-18 - PubMed
  12. Exp Cell Res. 1966 Nov-Dec;44(2):393-402 - PubMed
  13. J Plant Physiol. 2004 Oct;161(10):1101-6 - PubMed
  14. Front Plant Sci. 2013 May 22;4:150 - PubMed
  15. Biosci Biotechnol Biochem. 2011;75(11):2253-6 - PubMed
  16. Bioresour Technol. 2006 Jan;97(2):322-9 - PubMed
  17. Plant Physiol. 1999 Jun;120(2):539-46 - PubMed
  18. J Biol Chem. 2004 May 21;279(21):22422-9 - PubMed
  19. Nature. 2011 Nov 20;481(7381):380-4 - PubMed
  20. Nat Rev Cancer. 2012 Oct;12(10):685-98 - PubMed
  21. Cancer Res. 2012 Aug 1;72(15):3709-14 - PubMed
  22. J Eukaryot Microbiol. 2010 Jan-Feb;57(1):63-9 - PubMed
  23. Plant Physiol. 1980 Mar;65(3):566-8 - PubMed
  24. Planta. 1985 Sep;166(1):67-73 - PubMed

Publication Types