Display options
Share it on

Nat Commun. 2016 Oct 05;7:12806. doi: 10.1038/ncomms12806.

Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene.

Nature communications

Yang Bai, Qingfeng Dong, Yuchuan Shao, Yehao Deng, Qi Wang, Liang Shen, Dong Wang, Wei Wei, Jinsong Huang

Affiliations

  1. Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0656, USA.
  2. Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0656, USA.

PMID: 27703136 PMCID: PMC5059465 DOI: 10.1038/ncomms12806

Abstract

The instability of hybrid perovskite materials due to water and moisture arises as one major challenge to be addressed before any practical application of the demonstrated high efficiency perovskite solar cells. Here we report a facile strategy that can simultaneously enhance the stability and efficiency of p-i-n planar heterojunction-structure perovskite devices. Crosslinkable silane molecules with hydrophobic functional groups are bonded onto fullerene to make the fullerene layer highly water-resistant. Methylammonium iodide is introduced in the fullerene layer for n-doping via anion-induced electron transfer, resulting in dramatically increased conductivity over 100-fold. With crosslinkable silane-functionalized and doped fullerene electron transport layer, the perovskite devices deliver an efficiency of 19.5% with a high fill factor of 80.6%. A crosslinked silane-modified fullerene layer also enhances the water and moisture stability of the non-sealed perovskite devices by retaining nearly 90% of their original efficiencies after 30 days' exposure in an ambient environment.

References

  1. Nat Mater. 2014 Sep;13(9):897-903 - PubMed
  2. Nature. 2013 Jul 18;499(7458):316-9 - PubMed
  3. Phys Chem Chem Phys. 2011 May 28;13(20):9083-118 - PubMed
  4. Science. 2015 Jun 12;348(6240):1234-7 - PubMed
  5. Nat Chem. 2015 Sep;7(9):703-11 - PubMed
  6. Science. 2012 Nov 2;338(6107):643-7 - PubMed
  7. Science. 2014 Aug 1;345(6196):542-6 - PubMed
  8. Nat Commun. 2016 Jan 06;7:10228 - PubMed
  9. J Am Chem Soc. 2009 May 6;131(17):6050-1 - PubMed
  10. Nat Commun. 2013;4:2242 - PubMed
  11. Adv Mater. 2014 Mar 12;26(10):1584-9 - PubMed
  12. Science. 2013 Oct 18;342(6156):344-7 - PubMed
  13. Science. 2015 Feb 27;347(6225):967-70 - PubMed
  14. Nature. 2013 Sep 19;501(7467):395-8 - PubMed
  15. Adv Mater. 2013 Aug 27;25(32):4425-30 - PubMed
  16. Sci Rep. 2012;2:591 - PubMed
  17. Angew Chem Int Ed Engl. 2014 Oct 13;53(42):11232-5 - PubMed
  18. ACS Nano. 2014 Jan 28;8(1):362-73 - PubMed
  19. Nat Nanotechnol. 2016 Jan;11(1):75-81 - PubMed
  20. Nat Mater. 2014 May;13(5):476-80 - PubMed
  21. Nat Commun. 2014 Dec 15;5:5784 - PubMed
  22. Adv Mater. 2014 Oct 8;26(37):6503-9 - PubMed
  23. J Am Chem Soc. 2015 Feb 11;137(5):1790-3 - PubMed
  24. Adv Mater. 2013 May 7;25(17):2457-61 - PubMed
  25. Science. 2015 Nov 20;350(6263):944-8 - PubMed
  26. Nat Commun. 2015 Jul 20;6:7747 - PubMed
  27. J Phys Chem B. 2005 Aug 11;109(31):14945-53 - PubMed

Publication Types