Display options
Share it on

Exp Ther Med. 2016 Oct;12(4):2109-2119. doi: 10.3892/etm.2016.3599. Epub 2016 Aug 12.

Identification of hub genes and pathways associated with hepatocellular carcinoma based on network strategy.

Experimental and therapeutic medicine

Jun Liu, Ping Hua, Li Hui, Li-Li Zhang, Zhen Hu, Ying-Wei Zhu

Affiliations

  1. Department of Radiology, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China.
  2. Department of Internal Medicine, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China.

PMID: 27703495 PMCID: PMC5039750 DOI: 10.3892/etm.2016.3599

Abstract

The objective of this study was to identify hub genes and pathways associated with hepatocellular carcinoma (HCC) by centrality analysis of a co-expression network. A co-expression network based on differentially expressed (DE) genes of HCC was constructed using the Differentially Co-expressed Genes and Links (DCGL) package. Centrality analyses, for centrality of degree, clustering coefficient, closeness, stress and betweenness for the co-expression network were performed to identify hub genes, and the hub genes were combined together to overcome inconsistent results. Enrichment analyses were conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Finally, validation of hub genes was conducted utilizing reverse transcription-polymerase chain reaction (RT-PCR) analysis. In total, 260 DE genes between normal controls and HCC patients were obtained and a co-expression network with 154 nodes and 326 edges was constructed. From this, 13 hub genes were identified according to degree, clustering coefficient, closeness, stress and betweenness centrality analysis. It was found that reelin (

Keywords: centrality; co-expression network; hepatocellular carcinoma; hub gene; pathway; reverse transcription-polymerase chain reaction

References

  1. Hepatology. 2011 Mar;53(3):1020-2 - PubMed
  2. BMC Genomics. 2012 Feb 01;13:54 - PubMed
  3. Hepatology. 2011 Oct;54(4):1227-36 - PubMed
  4. Ann Surg. 2014 Mar;259(3):532-42 - PubMed
  5. Front Genet. 2012 Dec 07;3:284 - PubMed
  6. Gastroenterology. 2006 Feb;130(2):548-65 - PubMed
  7. PLoS One. 2012;7(7):e40498 - PubMed
  8. JAMA. 2002 Jan 16;287(3):356-9 - PubMed
  9. Bioinformatics. 2003 Jan 22;19(2):185-93 - PubMed
  10. Tumour Biol. 2013 Jun;34(3):1679-84 - PubMed
  11. Oncotarget. 2015 Apr 10;6(10):8089-102 - PubMed
  12. BMC Bioinformatics. 2012 Dec 24;13:335 - PubMed
  13. Brief Funct Genomics. 2012 Nov;11(6):497-504 - PubMed
  14. BMC Bioinformatics. 2003 Jan 13;4:2 - PubMed
  15. Lab Invest. 2012 Sep;92(9):1297-309 - PubMed
  16. Stat Appl Genet Mol Biol. 2004;3:Article3 - PubMed
  17. Methods Mol Biol. 2014;1153:285-99 - PubMed
  18. Cancer Lett. 2002 May 8;179(1):71-7 - PubMed
  19. Cancer Lett. 2011 Oct 1;309(1):95-103 - PubMed
  20. PLoS One. 2013;8(3):e60155 - PubMed
  21. Mod Pathol. 2007 Mar;20(3):344-51 - PubMed
  22. Ann Hepatol. 2014 May-Jun;13(3):317-22 - PubMed
  23. Biol Pharm Bull. 2012;35(11):1914-25 - PubMed
  24. BMC Bioinformatics. 2011 Oct 07;12:391 - PubMed
  25. Nat Rev Cancer. 2013 Feb;13(2):123-35 - PubMed
  26. PLoS One. 2014 Jul 02;9(7):e100854 - PubMed
  27. Nat Protoc. 2009;4(1):44-57 - PubMed
  28. Ann Surg Oncol. 2011 Feb;18(2):572-9 - PubMed
  29. Genomics. 2010 Nov;96(5):281-9 - PubMed
  30. Clin Cancer Res. 2013 Apr 1;19(7):1827-37 - PubMed
  31. Oncogene. 2008 Sep 18;27(42):5578-89 - PubMed
  32. Int J Oncol. 2010 Jan;36(1):85-92 - PubMed
  33. Mol Pharmacol. 2012 Sep;82(3):529-40 - PubMed
  34. Nucleic Acids Res. 2003 Feb 15;31(4):e15 - PubMed
  35. Hepatology. 2012 Nov;56(5):1792-803 - PubMed
  36. Clin Exp Ophthalmol. 2014 Jan-Feb;42(1):33-52 - PubMed

Publication Types