Display options
Share it on

R Soc Open Sci. 2016 Sep 07;3(9):160267. doi: 10.1098/rsos.160267. eCollection 2016 Sep.

Importance of metabolic rate to the relationship between the number of genes in a functional category and body size in Peto's paradox for cancer.

Royal Society open science

Kazuhiro Takemoto, Masato Ii, Satoshi S Nishizuka

Affiliations

  1. Department of Bioscience and Bioinformatics , Kyushu Institute of Technology , Iizuka, Fukuoka 820-8502 , Japan.
  2. Molecular Therapeutics Laboratory, Department of Surgery , Iwate Medical University School of Medicine , Morioka, Iwate 020-8505 , Japan.

PMID: 27703689 PMCID: PMC5043308 DOI: 10.1098/rsos.160267

Abstract

Elucidation of tumour suppression mechanisms is a major challenge in cancer biology. Therefore, Peto's paradox, or low cancer incidence in large animals, has attracted focus. According to the gene-abundance hypothesis, which considers the increase/decrease in cancer-related genes with body size, researchers evaluated the associations between gene abundance and body size. However, previous studies only focused on a few specific gene functions and have ignored the alternative hypothesis (metabolic rate hypothesis): in this hypothesis, the cellular metabolic rate and subsequent oxidative stress decreases with increasing body size. In this study, we have elected to explore the gene-abundance hypothesis taking into account the metabolic rate hypothesis. Thus, we comprehensively investigated the correlation between the number of genes in various functional categories and body size while at the same time correcting for the mass-specific metabolic rate (

Keywords: Peto's paradox; body size; cancer; functional analysis of genome; metabolic rate

References

  1. Sci Rep. 2015 May 06;5:10008 - PubMed
  2. J Chem Inf Model. 2013 Mar 25;53(3):613-22 - PubMed
  3. J Exp Biol. 2005 May;208(Pt 9):1717-30 - PubMed
  4. J R Soc Interface. 2010 Mar 6;7(44):507-14 - PubMed
  5. Evol Appl. 2013 Jan;6(1):109-16 - PubMed
  6. J Exp Biol. 2005 Aug;208(Pt 16):3015-35 - PubMed
  7. Philos Trans R Soc Lond B Biol Sci. 2015 Jul 19;370(1673):null - PubMed
  8. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2706-8 - PubMed
  9. Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):140-5 - PubMed
  10. Nat Rev Cancer. 2007 Dec;7(12 ):961-7 - PubMed
  11. Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):776-81 - PubMed
  12. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14080-5 - PubMed
  13. Proc Biol Sci. 2015 Mar 7;282(1802):null - PubMed
  14. Genes Dev. 2012 May 1;26(9):877-90 - PubMed
  15. Science. 2015 Jan 2;347(6217):78-81 - PubMed
  16. BMC Cancer. 2012 Sep 03;12:387 - PubMed
  17. Philos Trans R Soc Lond B Biol Sci. 2015 Jul 19;370(1673):null - PubMed
  18. Transplantation. 2010 Dec 15;90(11):1243-4 - PubMed
  19. Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13204-9 - PubMed
  20. J Natl Cancer Inst. 2003 Dec 3;95(23):1797-800 - PubMed
  21. Nucleic Acids Res. 2009 Jan;37(1):1-13 - PubMed
  22. Sci Rep. 2016 Apr 29;6:25246 - PubMed
  23. Med Sci Monit Basic Res. 2014 Aug 23;20:138-42 - PubMed
  24. Biosystems. 2015 Apr;130:11-6 - PubMed
  25. Br J Cancer. 1975 Oct;32(4):411-26 - PubMed
  26. Nucleic Acids Res. 2015 Feb 27;43(4):2466-85 - PubMed
  27. Exp Gerontol. 2003 Mar;38(3):333-7 - PubMed
  28. FEBS J. 2012 Aug;279(15):2610-23 - PubMed
  29. Biosystems. 2016 Jan;139:46-54 - PubMed
  30. Nat Methods. 2013 Mar;10(3):221-7 - PubMed
  31. Nat Rev Cancer. 2004 Jan;4(1):11-22 - PubMed
  32. Adv Cancer Res. 2003;90:127-56 - PubMed
  33. Cell Rep. 2015 Jan 6;10(1):112-22 - PubMed
  34. Integr Comp Biol. 2007 Aug;47(2):317-28 - PubMed
  35. JAMA. 2015 Nov 3;314(17):1850-60 - PubMed
  36. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4087-91 - PubMed
  37. Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9209-12 - PubMed
  38. Biosystems. 2013 Sep;113(3):149-54 - PubMed
  39. BMC Cancer. 2015 Oct 24;15:792 - PubMed
  40. Nature. 2011 Oct 19;478(7369):343-8 - PubMed
  41. Clin Cancer Res. 2014 Feb 1;20(3):557-64 - PubMed
  42. FEBS Lett. 2013 Sep 2;587(17):2731-7 - PubMed
  43. Trends Ecol Evol. 2011 Apr;26(4):175-82 - PubMed
  44. Oncotarget. 2016 May 3;7(18):26496-515 - PubMed
  45. J Immunother Cancer. 2015 Apr 21;3:11 - PubMed
  46. Integr Biol (Camb). 2011 Jan;3(1):17-30 - PubMed
  47. Cancer Res. 2012 Feb 1;72(3):636-44 - PubMed
  48. Nat Rev Cancer. 2009 Jan;9(1):57-63 - PubMed
  49. Biol Lett. 2007 Dec 22;3(6):655-9 - PubMed
  50. Science. 2013 Mar 29;339(6127):1546-58 - PubMed
  51. Curr Mol Med. 2015;15(1):62-77 - PubMed
  52. Proc Natl Acad Sci U S A. 2002 Feb 19;99 Suppl 1:2473-8 - PubMed
  53. J Exp Biol. 2005 May;208(Pt 9):1593-9 - PubMed
  54. Allergy. 2008 Oct;63(10):1255-66 - PubMed
  55. Nat Genet. 2000 May;25(1):25-9 - PubMed
  56. Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15816-20 - PubMed
  57. J Theor Biol. 1999 Aug 7;199(3):257-74 - PubMed
  58. J Theor Biol. 2008 Jun 7;252(3):530-7 - PubMed
  59. Nat Rev Genet. 2004 Nov;5(11):826-37 - PubMed
  60. Nucleic Acids Res. 2014 Jan;42(Database issue):D199-205 - PubMed
  61. PLoS Pathog. 2014 Jul 17;10(7):e1004214 - PubMed
  62. Nat Rev Cancer. 2009 Jul;9(7):517-26 - PubMed

Publication Types