Display options
Share it on

Sci Rep. 2016 Sep 27;6:34091. doi: 10.1038/srep34091.

Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection.

Scientific reports

Bryan J Feger, J Will Thompson, Laura G Dubois, Reddy P Kommaddi, Matthew W Foster, Rajashree Mishra, Sudha K Shenoy, Yoichiro Shibata, Yared H Kidane, M Arthur Moseley, Lisa S Carnell, Dawn E Bowles

Affiliations

  1. Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
  2. Duke Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, NC 27710, USA.
  3. Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
  4. Department of Genetics, the Carolina Center for Genome Sciences, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
  5. Wyle Science, Technology and Engineering Group, Houston, TX 77058, USA.
  6. NASA Johnson Space Center, Houston, TX 77058, USA.
  7. NASA Langley Research Center, Hampton, VA, 23666, USA.

PMID: 27670941 PMCID: PMC5037457 DOI: 10.1038/srep34091

Abstract

On Earth, biological systems have evolved in response to environmental stressors, interactions dictated by physical forces that include gravity. The absence of gravity is an extreme stressor and the impact of its absence on biological systems is ill-defined. Astronauts who have spent extended time under conditions of minimal gravity (microgravity) experience an array of biological alterations, including perturbations in cardiovascular function. We hypothesized that physiological perturbations in cardiac function in microgravity may be a consequence of alterations in molecular and organellar dynamics within the cellular milieu of cardiomyocytes. We used a combination of mass spectrometry-based approaches to compare the relative abundance and turnover rates of 848 and 196 proteins, respectively, in rat neonatal cardiomyocytes exposed to simulated microgravity or normal gravity. Gene functional enrichment analysis of these data suggested that the protein content and function of the mitochondria, ribosomes, and endoplasmic reticulum were differentially modulated in microgravity. We confirmed experimentally that in microgravity protein synthesis was decreased while apoptosis, cell viability, and protein degradation were largely unaffected. These data support our conclusion that in microgravity cardiomyocytes attempt to maintain mitochondrial homeostasis at the expense of protein synthesis. The overall response to this stress may culminate in cardiac muscle atrophy.

References

  1. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 - PubMed
  2. Physiol Genomics. 2006 Aug 16;26(3):163-71 - PubMed
  3. Cold Spring Harb Perspect Biol. 2011 Jul 01;3(7):null - PubMed
  4. Cell Stress Chaperones. 2006 Summer;11(2):116-28 - PubMed
  5. Cell Metab. 2014 Mar 4;19(3):357-72 - PubMed
  6. FASEB J. 2015 Feb;29(2):455-63 - PubMed
  7. Nucleic Acids Res. 2013 Jan;41(Database issue):D561-5 - PubMed
  8. Nat Protoc. 2007;2(3):532-40 - PubMed
  9. FASEB J. 1990 Jan;4(1):73-8 - PubMed
  10. Nat Rev Microbiol. 2010 Nov;8(11):791-801 - PubMed
  11. Methods Mol Biol. 2011;759:179-95 - PubMed
  12. Exp Gerontol. 2007 Apr;42(4):263-74 - PubMed
  13. Adv Exp Med Biol. 2013;990:1-35 - PubMed
  14. J Cereb Blood Flow Metab. 2003 Jul;23 (7):773-9 - PubMed
  15. Int J Cancer. 2006 Jun 15;118(12):2973-80 - PubMed
  16. In Vitro Cell Dev Biol Anim. 1997 May;33(5):337-43 - PubMed
  17. Res Microbiol. 2009 Nov;160(9):711-7 - PubMed
  18. Biochim Biophys Acta. 2013 Feb;1833(2):388-99 - PubMed
  19. Hum Gene Ther. 2012 Jun;23(6):635-46 - PubMed
  20. J Clin Invest. 2014 Apr;124(4):1734-44 - PubMed
  21. J Proteome Res. 2009 Jan;8(1):104-12 - PubMed
  22. J Tissue Cult Methods. 1992;14(2):51-7 - PubMed
  23. Biochem Biophys Res Commun. 2000 Aug 18;275(1):174-9 - PubMed
  24. Cold Spring Harb Perspect Biol. 2010 Dec;2(12):a004390 - PubMed
  25. Biochim Biophys Acta. 2011 Jul;1813(7):1295-301 - PubMed
  26. Curr Mol Med. 2011 Jul;11(5):350-64 - PubMed
  27. Genomics Proteomics Bioinformatics. 2008 Mar;6(1):29-41 - PubMed
  28. Am J Physiol Renal Physiol. 2001 Jul;281(1):F12-25 - PubMed
  29. Mol Cell Proteomics. 2012 Dec;11(12):1586-94 - PubMed
  30. J Cell Sci. 2010 Nov 15;123(Pt 22):3849-55 - PubMed
  31. J Proteome Res. 2012 Apr 6;11(4):2480-91 - PubMed
  32. J Cell Biochem. 2008 Jul 1;104(4):1324-41 - PubMed
  33. Nucleic Acids Res. 2014 Jan;42(Database issue):D756-63 - PubMed
  34. CMAJ. 2009 Jun 23;180(13):1317-23 - PubMed
  35. J Cell Biochem. 2011 Feb;112(2):571-80 - PubMed
  36. J Appl Physiol (1985). 2002 Apr;92(4):1367-77 - PubMed
  37. Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):19-24 - PubMed
  38. J Appl Physiol (1985). 1987 Jan;62(1):278-83 - PubMed
  39. Curr Opin Biotechnol. 2012 Aug;23(4):591-7 - PubMed
  40. Biochim Biophys Acta. 2011 Jul;1813(7):1360-72 - PubMed
  41. FASEB J. 1999;13 Suppl:S17-22 - PubMed
  42. Curr Opin Clin Nutr Metab Care. 2003 Jan;6(1):95-102 - PubMed
  43. J Appl Physiol (1985). 2001 Aug;91(2):645-53 - PubMed
  44. Nat Genet. 2000 May;25(1):25-9 - PubMed
  45. J Cell Biochem. 2001 Aug 21-Sep 5;83(3):508-19 - PubMed
  46. Genomics. 1999 Jul 1;59(1):51-8 - PubMed
  47. Cell. 2014 Sep 11;158(6):1362-74 - PubMed
  48. Cold Spring Harb Perspect Biol. 2011 Sep 01;3(9):a004424 - PubMed
  49. Annu Rev Biochem. 2012;81:379-405 - PubMed

Publication Types

Grant support