Display options
Share it on

Front Pharmacol. 2016 Aug 03;7:231. doi: 10.3389/fphar.2016.00231. eCollection 2016.

MSCs-Derived Exosomes: Cell-Secreted Nanovesicles with Regenerative Potential.

Frontiers in pharmacology

Ana Marote, Fábio G Teixeira, Bárbara Mendes-Pinheiro, António J Salgado

Affiliations

  1. Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, BragaPortugal; ICVS/3B's, PT Government Associate Laboratory, Braga/GuimarãesPortugal.

PMID: 27536241 PMCID: PMC4971062 DOI: 10.3389/fphar.2016.00231

Abstract

Exosomes are membrane-enclosed nanovesicles (30-150 nm) that shuttle active cargoes between different cells. These tiny extracellular vesicles have been recently isolated from mesenchymal stem cells (MSCs) conditioned medium, a population of multipotent cells identified in several adult tissues. MSCs paracrine activity has been already shown to be the key mediator of their elicited regenerative effects. On the other hand, the individual contribution of MSCs-derived exosomes for these effects is only now being unraveled. The administration of MSCs-derived exosomes has been demonstrated to restore tissue function in multiple diseases/injury models and to induce beneficial in vitro effects, mainly mediated by exosomal-enclosed miRNAs. Additionally, the source and the culture conditions of MSCs have been shown to influence the regenerative responses induced by exosomes. Therefore, these studies reveal that MSCs-derived exosomes hold a great potential for cell-free therapies that are safer and easier to manipulate than cell-based products. Nevertheless, this is an emerging research field and hence, further studies are required to understand the full dimension of this complex intercellular communication system and how it can be optimized to take full advantage of its therapeutic effects. In this mini-review, we summarize the most significant new advances in the regenerative properties of MSCs-derived exosomes and discuss the molecular mechanisms underlying these effects.

Keywords: cell-free therapy; exosomes; mesenchymal stem cells; regeneration; secretome

References

  1. Nat Commun. 2015 Oct 07;6:8472 - PubMed
  2. J Biol Chem. 2003 Mar 28;278(13):10963-72 - PubMed
  3. Stem Cell Res Ther. 2016 Feb 06;7:24 - PubMed
  4. Nat Cell Biol. 2012 Jun 29;14(7):654-5 - PubMed
  5. Sci Rep. 2015 Sep 08;5:13721 - PubMed
  6. Stem Cell Res. 2010 May;4(3):214-22 - PubMed
  7. J Am Heart Assoc. 2016 Jan 25;5(1):null - PubMed
  8. Stem Cells Dev. 2014 Dec 1;23(23):2851-61 - PubMed
  9. Stem Cell Rev. 2015 Apr;11(2):288-97 - PubMed
  10. Stem Cells Dev. 2014 Jun 1;23(11):1233-44 - PubMed
  11. Methods Mol Biol. 2015;1295:179-209 - PubMed
  12. Nat Cell Biol. 2007 Jun;9(6):654-9 - PubMed
  13. PLoS One. 2014 Feb 18;9(2):e88685 - PubMed
  14. Tissue Eng Part B Rev. 2015 Feb;21(1):45-54 - PubMed
  15. J Cell Biochem. 2006 Aug 1;98(5):1076-84 - PubMed
  16. Front Physiol. 2016 Mar 18;7:98 - PubMed
  17. Mol Neurobiol. 2014 Feb;49(1):590-600 - PubMed
  18. J Transl Med. 2012 Jan 05;10:5 - PubMed
  19. Nucleic Acids Res. 2012 Jan;40(Database issue):D1241-4 - PubMed
  20. Stem Cells. 2013 Dec;31(12):2737-46 - PubMed
  21. PLoS One. 2015 Dec 21;10(12):e0145686 - PubMed
  22. Front Physiol. 2016 Feb 09;7:24 - PubMed
  23. FEBS Lett. 2015 May 8;589(11):1257-65 - PubMed
  24. Circulation. 2012 Nov 27;126(22):2601-11 - PubMed
  25. PLoS One. 2015 Aug 06;10(8):e0135111 - PubMed
  26. Cytotherapy. 2015 Jul;17(7):932-9 - PubMed
  27. Gynecol Oncol. 2016 Jul;142(1):199-205 - PubMed
  28. Cell Mol Life Sci. 2013 Oct;70(20):3871-82 - PubMed
  29. Methods. 2012 Feb;56(2):293-304 - PubMed
  30. Am J Physiol Renal Physiol. 2011 Jan;300(1):F254-62 - PubMed
  31. Stem Cell Res Ther. 2013 Apr 25;4(2):34 - PubMed
  32. Nat Rev Mol Cell Biol. 2014 Aug;15(8):509-24 - PubMed
  33. J Extracell Vesicles. 2014 Aug 14;3:null - PubMed
  34. Stem Cells. 2016 Mar;34(3):601-13 - PubMed
  35. J Mol Med (Berl). 2014 Apr;92(4):387-97 - PubMed
  36. Stem Cells Dev. 2013 Mar 15;22(6):845-54 - PubMed
  37. Stem Cell Res Ther. 2015 Jul 01;6:127 - PubMed
  38. J Cereb Blood Flow Metab. 2013 Nov;33(11):1711-5 - PubMed
  39. Cell Physiol Biochem. 2015 ;37(6):2415-24 - PubMed
  40. Stem Cell Res Ther. 2015 Apr 10;6:10 - PubMed
  41. J Neurosurg. 2015 Apr;122(4):856-67 - PubMed
  42. Mol Ther. 2010 Sep;18(9):1606-14 - PubMed
  43. Stem Cell Res. 2007 Nov;1(2):129-37 - PubMed
  44. Nat Biotechnol. 2011 Apr;29(4):341-5 - PubMed
  45. Stem Cell Res. 2013 May;10 (3):301-12 - PubMed
  46. Stem Cell Res Ther. 2012 May 02;3(3):18 - PubMed
  47. Stem Cell Res Ther. 2014 Jun 10;5(3):76 - PubMed
  48. Mol Neurobiol. 2016 May;53(4):2397-408 - PubMed
  49. Sci Rep. 2016 Mar 02;6:22519 - PubMed
  50. Front Cell Neurosci. 2015 Jul 13;9:249 - PubMed
  51. Stem Cells Int. 2016;2016:3808674 - PubMed
  52. Sci Rep. 2013;3:1197 - PubMed
  53. J Extracell Vesicles. 2015 Dec 31;4:30087 - PubMed
  54. Exp Hematol. 1976 Sep;4(5):267-74 - PubMed
  55. Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):170-5 - PubMed
  56. Mol Neurobiol. 2016 Mar 19;:null - PubMed
  57. Neuroscience. 2016 Apr 21;320:129-39 - PubMed
  58. Science. 1999 Apr 2;284(5411):143-7 - PubMed
  59. J Extracell Vesicles. 2016 Feb 15;5:29497 - PubMed
  60. PLoS One. 2014 Nov 14;9(11):e112339 - PubMed
  61. Diabetes Metab Syndr Obes. 2012;5:247-82 - PubMed
  62. Cytotherapy. 2016 Jan;18(1):13-24 - PubMed
  63. Hepatology. 2008 May;47(5):1634-43 - PubMed
  64. Sci Rep. 2015 Sep 15;5:14135 - PubMed
  65. J Extracell Vesicles. 2014 Dec 22;3:26913 - PubMed
  66. Stem Cells. 2012 Jul;30(7):1556-64 - PubMed

Publication Types