Display options
Share it on

Rice (N Y). 2016 Dec;9(1):50. doi: 10.1186/s12284-016-0123-4. Epub 2016 Sep 26.

Analysis of Allelic Imbalance in Rice Hybrids Under Water Stress and Association of Asymmetrically Expressed Genes with Drought-Response QTLs.

Rice (New York, N.Y.)

Nelzo C Ereful, Li-Yu Liu, Eric Tsai, Shu-Min Kao, Shalabh Dixit, Ramil Mauleon, Katrina Malabanan, Michael Thomson, Antonio Laurena, David Lee, Ian Mackay, Andy Greenland, Wayne Powell, Hei Leung

Affiliations

  1. Genetics and Biotechnology Division, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines. [email protected].
  2. The John Bingham Laboratory, National Institute of Agricultural Botany (NIAB), Huntingdon Road, Cambridge, CB3 0LE, UK. [email protected].
  3. Department of Agronomy, National Taiwan University (NTU), Taipei City, 100, Taiwan.
  4. Genetics and Biotechnology Division, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines.
  5. Crop Science Cluster, College of Agriculture, University of the Philippines, Los Baños, Laguna, 4031, Philippines.
  6. Texas A &M, Department of Soil and Crop Sciences 2474 TAMU, College Station, TX, 77843-2474, USA.
  7. Institute of Plant Breeding, University of the Philippines, Los Baños, Laguna, Philippines.
  8. The John Bingham Laboratory, National Institute of Agricultural Botany (NIAB), Huntingdon Road, Cambridge, CB3 0LE, UK.
  9. SRUC, Peter Wilson Building, West Mains Road, Edinburgh, EH9 3JG, UK.

PMID: 27671164 PMCID: PMC5037104 DOI: 10.1186/s12284-016-0123-4

Abstract

BACKGROUND: Information on the effect of stress on the allele-specific expression (ASE) profile of rice hybrids is limited. More so, the association of allelically imbalanced genes to important traits is yet to be understood. Here we assessed allelic imbalance (AI) in the heterozygote state of rice under non- and water-stress treatments and determined association of asymmetrically expressed genes with grain yield (GY) under drought stress by in-silico co-localization analysis and selective genotyping. The genotypes IR64, Apo and their F1 hybrid (IR64 × Apo) were grown under normal and water-limiting conditions. We sequenced the total RNA transcripts for all genotypes then reconstructed the two chromosomes in the heterozygote.

RESULTS: We are able to estimate the transcript abundance of and the differential expression (DE) between the two parent-specific alleles in the rice hybrids. The magnitude and direction of AI are classified into two categories: (1) symmetrical or biallelic and (2) asymmetrical. The latter can be further classified as either IR64- or Apo-favoring gene. Analysis showed that in the hybrids grown under non-stress conditions, 179 and 183 favor Apo- and IR64-specific alleles, respectively. Hence, the number of IR64- and Apo-favoring genes is relatively equal. Under water-stress conditions, 179 and 255 favor Apo- and IR64-specific alleles, respectively, indicating that the number of allelically imbalanced genes is skewed towards IR64. This is nearly 40-60 % preference for Apo and IR64 alleles, respectively, to the hybrid transcriptome. We also observed genes which exhibit allele preference switching when exposed to water-stress conditions. Results of in-silico co-localization procedure and selective genotyping of Apo/IR64 F3:5 progenies revealed significant association of several asymmetrically expressed genes with GY under drought stress conditions.

CONCLUSION: Our data suggest that water stress skews AI on a genome-wide scale towards the IR64 allele, the cross-specific maternal allele. Several asymmetrically expressed genes are strongly associated with GY under drought stress which may shed hints that genes associated with important traits are allelically imbalanced. Our approach of integrating hybrid expression analysis and QTL mapping analysis may be an efficient strategy for shortlisting candidate genes for gene discovery.

Keywords: Allele-specific expression (ASE); Allelic imbalance (AI); Co-localization analysis; Drought; Quantitative trait loci (QTL); RNA-seq; Rice (Oryza sativa L.); Selective genotyping

References

  1. J Appl Genet. 2013 Aug;54(3):271-83 - PubMed
  2. Nat Methods. 2013 Jan;10(1):71-3 - PubMed
  3. J Exp Bot. 2011 Nov;62(15):5471-83 - PubMed
  4. Science. 2009 May 1;324(5927):659-62 - PubMed
  5. Nat Methods. 2012 Mar 04;9(4):357-9 - PubMed
  6. J Exp Bot. 2011 Mar;62(6):1951-60 - PubMed
  7. Oncol Rep. 2009 Sep;22(3):493-9 - PubMed
  8. Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):12040-5 - PubMed
  9. Nat Genet. 2015 Apr;47(4):353-60 - PubMed
  10. Genome Med. 2009 May 29;1(5):56 - PubMed
  11. Nucleic Acids Res. 1980 Oct 10;8(19):4321-5 - PubMed
  12. Genome Biol. 2010;11(10):R106 - PubMed
  13. Genome Res. 2001 Aug;11(8):1441-52 - PubMed
  14. BMC Genomics. 2015 Mar 24;16:232 - PubMed
  15. Genome Res. 2012 Dec;22(12):2445-54 - PubMed
  16. Hum Mol Genet. 2010 Jan 1;19(1):122-34 - PubMed
  17. Adv Exp Med Biol. 2016;903:3-15 - PubMed
  18. Plant Cell. 2007 Aug;19(8):2391-402 - PubMed
  19. BMC Plant Biol. 2013 Dec 21;13:221 - PubMed
  20. Sci Rep. 2015 Oct 28;5:15183 - PubMed
  21. Genome Res. 2007 Mar;17(3):264-75 - PubMed
  22. Science. 2015 Mar 6;347(6226):1259038 - PubMed
  23. Plant Cell. 2010 Jan;22(1):17-33 - PubMed
  24. Genome Biol Evol. 2013;5(7):1309-23 - PubMed
  25. PLoS One. 2013;8(1):e54537 - PubMed
  26. Hum Mutat. 2010 Jun;31(6):685-91 - PubMed
  27. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  28. Genome Res. 2010 Jun;20(6):816-25 - PubMed
  29. Plant Biotechnol J. 2010 Jan;8(1):10-27 - PubMed
  30. Genome Biol. 2013 Jul 01;14(7):R70 - PubMed
  31. Nucleic Acids Res. 2007;35(5):e34 - PubMed
  32. Plant J. 2009 Jul;59(1):14-26 - PubMed
  33. Nature. 2004 Jul 1;430(6995):85-8 - PubMed

Publication Types

Grant support