Display options
Share it on

Front Endocrinol (Lausanne). 2016 Aug 03;7:108. doi: 10.3389/fendo.2016.00108. eCollection 2016.

Vanadate Impedes Adipogenesis in Mesenchymal Stem Cells Derived from Different Depots within Bone.

Frontiers in endocrinology

Frans Alexander Jacobs, Hanél Sadie-Van Gijsen, Mari van de Vyver, William Frank Ferris

Affiliations

  1. Department of Medicine, Division of Endocrinology, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, Western Cape , South Africa.

PMID: 27536268 PMCID: PMC4971437 DOI: 10.3389/fendo.2016.00108

Abstract

Glucocorticoid-induced osteoporosis (GIO) is associated with an increase in bone marrow adiposity, which skews the differentiation of mesenchymal stem cell (MSC) progenitors away from osteoblastogenesis and toward adipogenesis. We have previously found that vanadate, a non-specific protein tyrosine phosphatase inhibitor, prevents GIO in rats, but it was unclear whether vanadate directly influenced adipogenesis in bone-derived MSCs. For the present study, we investigated the effect of vanadate on adipogenesis in primary rat MSCs derived from bone marrow (bmMSCs) and from the proximal end of the femur (pfMSCs). By passage 3 after isolation, both cell populations expressed the MSC cell surface markers CD90 and CD106, but not the hematopoietic marker CD45. However, although variable, expression of the fibroblast marker CD26 was higher in pfMSCs than in bmMSCs. Differentiation studies using osteogenic and adipogenic induction media (OM and AM, respectively) demonstrated that pfMSCs rapidly accumulated lipid droplets within 1 week of exposure to AM, while bmMSCs isolated from the same femur only formed lipid droplets after 3 weeks of AM treatment. Conversely, pfMSCs exposed to OM produced mineralized extracellular matrix (ECM) after 3 weeks, compared to 1 week for OM-treated bmMSCs. Vanadate (10 μM) added to AM resulted in a significant reduction in AM-induced intracellular lipid accumulation and expression of adipogenic gene markers (PPARγ2, aP2, adipsin) in both pfMSCs and bmMSCs. Pharmacological concentrations of glucocorticoids (1 μM) alone did not induce lipid accumulation in either bmMSCs or pfMSCs, but resulted in significant cell death in pfMSCs. Our findings demonstrate the existence of at least two fundamentally different MSC depots within the femur and highlights the presence of MSCs capable of rapid adipogenesis within the proximal femur, an area prone to osteoporotic fractures. In addition, our results suggest that the increased bone marrow adiposity observed in GIO may not be solely due to direct effect of glucocorticoids on bone-derived MSCs, and that an increase in femur lipid content may also arise from increased adipogenesis in MSCs residing outside of the bone marrow niche.

Keywords: adipogenesis; bone; glucocorticoids; mesenchymal stem cells; vanadate

References

  1. J Orthop Res. 1991 Sep;9(5):641-50 - PubMed
  2. Orthopedics. 2008 May;31(5):444 - PubMed
  3. J Cell Sci. 2004 Jul 15;117(Pt 16):3605-14 - PubMed
  4. Biochem Biophys Res Commun. 2004 Jun 25;319(2):511-7 - PubMed
  5. Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3324-9 - PubMed
  6. J Biol Chem. 2004 Aug 20;279(34):35503-9 - PubMed
  7. J Cell Biochem. 2006 May 15;98(2):251-66 - PubMed
  8. Arthritis Rheum. 1999 Jul;42(7):1405-11 - PubMed
  9. Bone. 2002 May;30(5):685-91 - PubMed
  10. Adv Exp Med Biol. 2015;872:179-215 - PubMed
  11. PLoS One. 2012;7(4):e36085 - PubMed
  12. J Clin Immunol. 2010 Jul;30(4):607-19 - PubMed
  13. J Clin Invest. 1998 Jul 15;102(2):274-82 - PubMed
  14. J Bone Miner Res. 2007 Dec;22(12 ):1924-32 - PubMed
  15. J Bone Joint Surg Br. 1999 Mar;81(2):349-55 - PubMed
  16. Bone. 2012 Feb;50(2):477-89 - PubMed
  17. J Biol Chem. 2008 Jan 25;283(4):1936-45 - PubMed
  18. Cell Tissue Res. 2007 Mar;327(3):449-62 - PubMed
  19. Arthritis Res Ther. 2004;6(5):R422-32 - PubMed
  20. Nucleic Acids Res. 2001 May 1;29(9):e45 - PubMed
  21. PLoS One. 2015 Aug 11;10(8):e0135358 - PubMed
  22. Endocrinology. 2010 Jun;151(6):2641-9 - PubMed
  23. J Biol Chem. 2000 Nov 3;275(44):34344-52 - PubMed
  24. Cell. 2007 Oct 19;131(2):242-56 - PubMed
  25. Osteoporos Int. 2007 Oct;18(10):1319-28 - PubMed
  26. Skeletal Radiol. 2013 Sep;42(9):1235-44 - PubMed
  27. J Cell Biochem. 1997 Feb;64(2):295-312 - PubMed
  28. Haematologica. 2006 Mar;91(3):364-8 - PubMed
  29. Nat Protoc. 2010 Mar;5(3):550-60 - PubMed
  30. J Biol Chem. 2005 Jun 24;280(25):23653-9 - PubMed
  31. Bone. 2013 Oct;56(2):255-65 - PubMed
  32. Nat Genet. 2000 Apr;24(4):391-5 - PubMed
  33. J Cell Sci Suppl. 1988;10:63-76 - PubMed
  34. J Bone Miner Res. 2005 Aug;20(8):1487-94; discussion 1486 - PubMed
  35. Bone. 2013 Feb;52(2):668-75 - PubMed
  36. Science. 2000 Aug 11;289(5481):950-3 - PubMed
  37. J Endocrinol. 2007 Nov;195(2):229-40 - PubMed
  38. Anal Biochem. 1986 Aug 1;156(2):307-14 - PubMed
  39. Anal Biochem. 2004 Jun 1;329(1):77-84 - PubMed
  40. Singapore Med J. 2010 Dec;51(12):948-51 - PubMed
  41. Bone. 2002 Jan;30(1):185-90 - PubMed
  42. Cell Death Dis. 2013 Oct 03;4:e832 - PubMed
  43. Exp Gerontol. 2016 Jan;73:49-58 - PubMed
  44. Annu Rev Biochem. 2008;77:289-312 - PubMed
  45. Life Sci. 2009 Feb 27;84(9-10):302-10 - PubMed
  46. Bone. 2002 Jul;31(1):220-9 - PubMed
  47. J Mol Histol. 2014 Oct;45(5):599-608 - PubMed
  48. Biochimie. 1991 Jan;73(1):67-70 - PubMed
  49. Dev Dyn. 2000 Dec;219(4):461-71 - PubMed
  50. Mol Vis. 2007 Aug 29;13:1508-15 - PubMed
  51. J Diabetes Res. 2015;2015:970375 - PubMed
  52. Int J Dev Biol. 2007;51(8):723-9 - PubMed

Publication Types