Display options
Share it on

Front Microbiol. 2016 Aug 03;7:1188. doi: 10.3389/fmicb.2016.01188. eCollection 2016.

Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase.

Frontiers in microbiology

Silvia Sancho Navarro, Ruxandra Cimpoia, Guillaume Bruant, Serge R Guiot

Affiliations

  1. Bioengineering Group, Energy, Mining and Environment, National Research Council CanadaMontreal, QC, Canada; Department of Microbiology, Infectiology and Immunology, Université de MontréalMontreal, QC, Canada.
  2. Bioengineering Group, Energy, Mining and Environment, National Research Council Canada Montreal, QC, Canada.

PMID: 27536280 PMCID: PMC4971024 DOI: 10.3389/fmicb.2016.01188

Abstract

Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming) methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB) reactor treating waste water, and elucidates the CO conversion routes to methane at 35 ± 3°C. Kinetic activity tests under CO at partial pressures (pCO) varying from 0.1 to 1.5 atm (0.09-1.31 mmol/L in the liquid phase) showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L), and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2, and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES), fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥1 atm). However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO) bacteria oxidized acetate into CO2 and H2. The disaggregation of the granular sludge showed a negative impact on their methanogenic activity, confirming that the acetoclastic methanogens were the most sensitive to CO, and a contrario, the advantage of using granular sludge for further development toward large-scale methane production from CO-rich syngas.

Keywords: anaerobic; carbon monoxide; carboxydotrophic methanogenesis; methanation; syngas; syntrophic acetate oxidation

References

  1. Appl Environ Microbiol. 2006 Jul;72(7):4942-9 - PubMed
  2. Front Microbiol. 2011 Jul 11;2:147 - PubMed
  3. Appl Environ Microbiol. 1990 Aug;56(8):2511-6 - PubMed
  4. Biotechnol Bioeng. 1995 Mar 5;45(5):398-405 - PubMed
  5. Appl Environ Microbiol. 2006 Jul;72(7):5138-41 - PubMed
  6. FEMS Microbiol Lett. 2008 May;282(2):182-7 - PubMed
  7. Water Res. 2016 Mar 1;90:34-43 - PubMed
  8. FEMS Microbiol Ecol. 2007 Dec;62(3):336-44 - PubMed
  9. Appl Environ Microbiol. 1999 Mar;65(3):1280-8 - PubMed
  10. J Bacteriol. 1977 Oct;132(1):118-26 - PubMed
  11. Appl Environ Microbiol. 2005 Jan;71(1):331-8 - PubMed
  12. Bioresour Technol. 2011 Sep;102(17):8071-6 - PubMed
  13. Environ Sci Technol. 2011 Jan 15;45(2):508-13 - PubMed
  14. Can J Microbiol. 2014 Jun;60(6):407-15 - PubMed
  15. FEMS Microbiol Lett. 2009 Mar;292(2):254-60 - PubMed
  16. Appl Microbiol Biotechnol. 2002 Aug;59(4-5):585-90 - PubMed
  17. Environ Microbiol. 2009 May;11(5):1027-37 - PubMed
  18. Bioresour Technol. 2015 Jun;186:122-7 - PubMed
  19. J Bacteriol. 1984 Apr;158(1):373-5 - PubMed
  20. Appl Environ Microbiol. 1998 Jun;64(6):2232-6 - PubMed
  21. Int J Syst Evol Microbiol. 2005 May;55(Pt 3):1113-21 - PubMed
  22. FEMS Microbiol Ecol. 2003 May 1;44(2):271-7 - PubMed
  23. Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17921-6 - PubMed
  24. Crit Rev Biotechnol. 2006 Jan-Mar;26(1):41-65 - PubMed
  25. FEMS Microbiol Ecol. 2013 Dec;86(3):590-7 - PubMed
  26. J Gen Microbiol. 1952 Feb;6(1-2):123-7 - PubMed
  27. Bacteriol Rev. 1977 Mar;41(1):100-80 - PubMed
  28. Chem Rev. 2006 Sep;106(9):4044-98 - PubMed
  29. Arch Microbiol. 2008 Sep;190(3):257-69 - PubMed
  30. J Appl Microbiol. 2005;98(2):440-9 - PubMed
  31. Arch Microbiol. 2012 Feb;194(2):75-85 - PubMed
  32. Bioresour Technol. 2002 May;83(1):55-63 - PubMed
  33. Appl Environ Microbiol. 1981 Dec;42(6):985-92 - PubMed
  34. Appl Environ Microbiol. 1988 Jun;54(6):1457-61 - PubMed
  35. Chemosphere. 2003 Jan;50(1):63-9 - PubMed
  36. Proc Natl Acad Sci U S A. 2004 Nov 30;101(48):16929-34 - PubMed
  37. Environ Sci Technol. 2011 Mar 1;45(5):2006-12 - PubMed
  38. Appl Microbiol Biotechnol. 2004 Apr;64(3):421-8 - PubMed
  39. Curr Opin Biotechnol. 2007 Jun;18(3):200-6 - PubMed
  40. Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10664-9 - PubMed
  41. Appl Environ Microbiol. 2008 Feb;74(4):942-9 - PubMed
  42. Appl Microbiol Biotechnol. 1997 Jun;47(6):719-25 - PubMed
  43. Int J Syst Evol Microbiol. 2008 May;58(Pt 5):1075-8 - PubMed
  44. Appl Environ Microbiol. 1993 Mar;59(3):695-700 - PubMed
  45. Int J Syst Evol Microbiol. 2005 Sep;55(Pt 5):2085-91 - PubMed

Publication Types