Display options
Share it on

Front Oncol. 2016 Aug 03;6:177. doi: 10.3389/fonc.2016.00177. eCollection 2016.

Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection.

Frontiers in oncology

Silvia Muraro, Giuseppe Battistoni, Francesco Collamati, Erika De Lucia, Riccardo Faccini, Fernando Ferroni, Salvatore Fiore, Paola Frallicciardi, Michela Marafini, Ilaria Mattei, Silvio Morganti, Riccardo Paramatti, Luca Piersanti, Davide Pinci, Antoni Rucinski, Andrea Russomando, Alessio Sarti, Adalberto Sciubba, Elena Solfaroli-Camillocci, Marco Toppi, Giacomo Traini, Cecilia Voena, Vincenzo Patera

Affiliations

  1. INFN Sezione di Milano , Milano , Italy.
  2. Laboratori Nazionali di Frascati dell'INFN , Frascati , Italy.
  3. Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy; INFN Sezione di Roma, Roma, Italy.
  4. INFN Sezione di Roma, Roma, Italy; UTTMAT, ENEA, Roma, Italy.
  5. Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma, Roma, Italy; Istituto di Ricerche Cliniche Ecomedia, Empoli, Italy.
  6. INFN Sezione di Roma, Roma, Italy; Museo Storico della Fisica e Centro Studi e Ricerche "E. Fermi", Roma, Italy.
  7. INFN Sezione di Roma , Roma , Italy.
  8. INFN Sezione di Roma, Roma, Italy; Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma, Roma, Italy.
  9. INFN Sezione di Roma, Roma, Italy; Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma, Roma, Italy; Museo Storico della Fisica e Centro Studi e Ricerche "E. Fermi", Roma, Italy.

PMID: 27536555 PMCID: PMC4972018 DOI: 10.3389/fonc.2016.00177

Abstract

The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages.

Keywords: hadrontherapy; particle detection; real time monitoring

References

  1. Phys Med Biol. 2013 Jun 7;58(11):3755-73 - PubMed
  2. Radiother Oncol. 2016 Feb;118(2):232-7 - PubMed
  3. Phys Med Biol. 2008 Aug 21;53(16):4443-53 - PubMed
  4. Phys Med Biol. 2012 Sep 21;57(18):5667-78 - PubMed
  5. Radiat Prot Dosimetry. 2006;122(1-4):485-7 - PubMed
  6. Int J Radiat Oncol Biol Phys. 1994 Jan 1;28(1):257-61 - PubMed
  7. Med Phys. 2012 Nov;39(11):6726-37 - PubMed
  8. Int J Radiat Oncol Biol Phys. 1997 Dec 1;39(5):989-96 - PubMed
  9. Phys Med Biol. 2005 Jul 21;50(14):3393-403 - PubMed
  10. Phys Med Biol. 2006 Dec 7;51(23 ):6099-112 - PubMed
  11. Radiother Oncol. 2013 May;107(2):218-26 - PubMed
  12. Radiother Oncol. 2016 May;119(2):326-30 - PubMed
  13. Science. 1978 Jun 9;200(4346):1151-3 - PubMed
  14. Ophthalmology. 1993 Oct;100(10):1547-54 - PubMed
  15. Phys Med Biol. 2012 Aug 7;57(15):5017-34 - PubMed
  16. Phys Med. 2014 Jul;30(5):559-69 - PubMed
  17. Phys Med Biol. 2012 Jul 21;57(14):4655-69 - PubMed
  18. Phys Med Biol. 2014 Apr 7;59(7):1857-72 - PubMed
  19. Front Oncol. 2015 Jul 07;5:150 - PubMed
  20. Nat Rev Clin Oncol. 2013 Jul;10(7):411-24 - PubMed
  21. IEEE Trans Med Imaging. 1982;1(2):113-22 - PubMed
  22. Phys Med. 2015 Jun;31(4):333-51 - PubMed
  23. Phys Med Biol. 2013 Sep 7;58(17):5821-31 - PubMed
  24. Phys Med Biol. 2013 Aug 7;58(15):R131-60 - PubMed
  25. Phys Med Biol. 2013 May 7;58(9):2879-99 - PubMed

Publication Types