Display options
Share it on

ACS Appl Mater Interfaces. 2016 Sep 14;8(36):23995-4007. doi: 10.1021/acsami.6b08294. Epub 2016 Aug 30.

Electrospun Poly(acrylic acid)/Silica Hydrogel Nanofibers Scaffold for Highly Efficient Adsorption of Lanthanide Ions and Its Photoluminescence Performance.

ACS applied materials & interfaces

Min Wang, Xiong Li, Weikang Hua, Lingdi Shen, Xufeng Yu, Xuefen Wang

Affiliations

  1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University , Shanghai 201620, PR China.

PMID: 27537710 DOI: 10.1021/acsami.6b08294

Abstract

Combined with the features of electrospun nanofibers and the nature of hydrogel, a novel choreographed poly(acrylic acid)-silica hydrogel nanofibers (PAA-S HNFs) scaffold with excellent rare earth elements (REEs) recovery performance was fabricated by a facile route consisting of colloid-electrospinning of PAA/SiO2 precursor solution, moderate thermal cross-linking of PAA-S nanofiber matrix, and full swelling in water. The resultant PAA-S HNFs with a loose and spongy porous network structure exhibited a remarkable adsorption capacity of lanthanide ions (Ln(3+)) triggered by the penetration of Ln(3+) from the nanofiber surface to interior through the abundant water channels, which took full advantage of the internal adsorption sites of nanofibers. The effects of initial solution pH, concentration, and contact time on adsorption of Ln(3+) have been investigated comprehensively. The maximum equilibrium adsorption capacities for La(3+), Eu(3+), and Tb(3+) were 232.6, 268.8, and 250.0 mg/g, respectively, at pH 6, and the adsorption data were well-fitted to the Langmuir isotherm and pseudo-second-order models. The resultant PAA-S HNFs scaffolds could be regenerated successfully. Furthermore, the proposed adsorption mechanism of Ln(3+) on PAA-S HNFs scaffolds was the formation of bidentate carboxylates between carboxyl groups and Ln(3+) confirmed by FT-IR and XPS analysis. The well-designed PAA-S HNFs scaffold can be used as a promising alternative for effective REEs recovery. Moreover, benefiting from the unique features of Ln(3+), the Ln-PAA-S HNFs simultaneously exhibited versatile advantages including good photoluminescent performance, tunable emission color, and excellent flexibility and processability, which also hold great potential for applications in luminescent patterning, underwater fluorescent devices, sensors, and biomaterials, among others.

Keywords: adsorption; colloid-electrospinning; hydrogel nanofibers; lanthanide ions; photoluminescent

Publication Types