Display options
Share it on

Cell Discov. 2016 Sep 20;2:16030. doi: 10.1038/celldisc.2016.30. eCollection 2016.

NTRK2 activation cooperates with PTEN deficiency in T-ALL through activation of both the PI3K-AKT and JAK-STAT3 pathways.

Cell discovery

Haluk Yuzugullu, Thanh Von, Lauren M Thorpe, Sarah R Walker, Thomas M Roberts, David A Frank, Jean J Zhao

Affiliations

  1. Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
  2. Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

PMID: 27672444 PMCID: PMC5029543 DOI: 10.1038/celldisc.2016.30

Abstract

Loss of PTEN, a negative regulator of the phosphoinositide 3-kinase signaling pathway, is a frequent event in T-cell acute lymphoblastic leukemia, suggesting the importance of phosphoinositide 3-kinase activity in this disease. Indeed, hyperactivation of the phosphoinositide 3-kinase pathway is associated with the disease aggressiveness, poor prognosis and resistance to current therapies. To identify a molecular pathway capable of cooperating with PTEN deficiency to drive oncogenic transformation of leukocytes, we performed an unbiased transformation screen with a library of tyrosine kinases. We found that activation of NTRK2 is able to confer a full growth phenotype of Ba/F3 cells in an IL3-independent manner in the PTEN-null setting. NTRK2 activation cooperates with PTEN deficiency through engaging both phosphoinositide3-kinase/AKT and JAK/STAT3 pathway activation in leukocytes. Notably, pharmacological inhibition demonstrated that p110α and p110δ are the major isoforms mediating the phosphoinositide 3-kinase/AKT signaling driven by NTRK2 activation in PTEN-deficient leukemia cells. Furthermore, combined inhibition of phosphoinositide 3-kinase and STAT3 significantly suppressed proliferation of PTEN-mutant T-cell acute lymphoblastic leukemia both in culture and in mouse xenografts. Together, our data suggest that a unique conjunction of PTEN deficiency and NTRK2 activation in T-cell acute lymphoblastic leukemia, and combined pharmacologic inhibition of phosphoinositide 3-kinase and STAT3 signaling may serve as an effective and durable therapeutic strategy for T-cell acute lymphoblastic leukemia.

Keywords: NTRK2; PI3K; PTEN; STAT-3; T-ALL; targeted therapy

Conflict of interest statement

TMR is a consultant of Novartis and has received a research grant from Novartis. The remaining authors declare no competing financial interests.

References

  1. Nat Genet. 2013 Aug;45(8):927-32 - PubMed
  2. Mol Cancer Ther. 2006 Oct;5(10):2512-21 - PubMed
  3. Leukemia. 2009 Aug;23 (8):1417-25 - PubMed
  4. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12419-24 - PubMed
  5. Blood. 2009 Feb 26;113(9):2028-37 - PubMed
  6. Proc Natl Acad Sci U S A. 2014 Apr 29;111(17 ):6395-400 - PubMed
  7. Blood. 2005 Jun 1;105(11):4429-36 - PubMed
  8. Gastroenterol Clin Biol. 1989 May;13(5):469-72 - PubMed
  9. J Exp Med. 1999 Mar 1;189(5):865-70 - PubMed
  10. Cancer Cell. 2012 Dec 11;22(6):796-811 - PubMed
  11. J Clin Invest. 2014 Apr;124(4):1794-809 - PubMed
  12. Cancer Discov. 2012 May;2(5):425-33 - PubMed
  13. Nat Rev Cancer. 2015 Jan;15(1):7-24 - PubMed
  14. Adv Enzyme Regul. 1984;22:27-55 - PubMed
  15. Genes Dev. 2000 Feb 15;14 (4):391-6 - PubMed
  16. Blood. 2009 Jul 16;114(3):647-50 - PubMed
  17. N Engl J Med. 2014 Mar 13;370(11):1061-2 - PubMed
  18. Cancer Discov. 2012 Oct;2(10):934-47 - PubMed
  19. J Med Chem. 2013 Jun 13;56(11):4597-610 - PubMed
  20. Cancer Discov. 2011 Nov;1(6):481-6 - PubMed
  21. Genes Dev. 2012 Jul 15;26(14):1573-86 - PubMed
  22. Nat Commun. 2015 Oct 07;6:8501 - PubMed
  23. Oncogene. 2016 Jul 7;35(27):3607-12 - PubMed
  24. Nat Med. 2007 Oct;13(10 ):1203-10 - PubMed
  25. Nat Rev Neurosci. 2009 Dec;10(12):850-60 - PubMed
  26. Oncogene. 2000 Mar 23;19(13):1684-90 - PubMed
  27. J Immunol. 1996 Oct 1;157(7):2864-72 - PubMed
  28. Leukemia. 2005 Nov;19(11):1948-57 - PubMed
  29. Nat Genet. 2013 Oct;45(10):1141-9 - PubMed
  30. J Biol Chem. 2007 May 11;282(19):14379-88 - PubMed
  31. Leukemia. 2000 Oct;14(10):1766-76 - PubMed
  32. Blood. 2008 Dec 15;112(13):5095-102 - PubMed
  33. J Clin Invest. 2005 Mar;115(3):653-63 - PubMed
  34. Nature. 2012 Apr 15;485(7397):260-3 - PubMed
  35. J Biol Chem. 1997 Nov 28;272(48):30334-9 - PubMed
  36. PLoS One. 2013 Jul 09;8(7):e67990 - PubMed
  37. Leukemia. 2009 Nov;23(11):2102-8 - PubMed
  38. Cancer Cell. 2012 Apr 17;21(4):459-72 - PubMed
  39. Nature. 2007 Jun 21;447(7147):966-71 - PubMed
  40. Blood. 2011 Jan 13;117(2):591-4 - PubMed
  41. Nat Genet. 2014 May;46(5):444-50 - PubMed
  42. Blood. 2005 Jul 1;106(1):274-86 - PubMed
  43. Oncogene. 2015 Jul;34(27):3593-604 - PubMed
  44. Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10299-304 - PubMed
  45. Nature. 2004 Aug 26;430(7003):1034-9 - PubMed
  46. Cell. 1991 Apr 5;65(1):189-97 - PubMed
  47. Nature. 1991 Mar 14;350(6314):158-60 - PubMed

Publication Types

Grant support