Display options
Share it on

Aging Cell. 2016 Dec;15(6):1027-1038. doi: 10.1111/acel.12516. Epub 2016 Aug 18.

Reducing translation through eIF4G/IFG-1 improves survival under ER stress that depends on heat shock factor HSF-1 in Caenorhabditis elegans.

Aging cell

Amber C Howard, Jarod Rollins, Santina Snow, Sarah Castor, Aric N Rogers

Affiliations

  1. MDI Biological Laboratory, Davis Center for Regenerative Biology and Medicine, 159 Old Bar Harbor Road, Salisbury Cove, ME, 04672, USA.
  2. The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.

PMID: 27538368 PMCID: PMC5114698 DOI: 10.1111/acel.12516

Abstract

Although certain methods of lowering and/or altering mRNA translation are associated with increased lifespan, the mechanisms underlying this effect remain largely unknown. We previously showed that the increased lifespan conferred by reducing expression of eukaryotic translation initiation factor 4G (eIF4G/IFG-1) enhances survival under starvation conditions while shifting protein expression toward factors involved with maintaining ER-dependent protein and lipid balance. In this study, we investigated changes in ER homeostasis and found that lower eIF4G/IFG-1 increased survival under conditions of ER stress. Enhanced survival required the ER stress sensor gene ire-1 and the ER calcium ATPase gene sca-1 and corresponded with increased translation of chaperones that mediate the ER unfolded protein response (UPR

© 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

Keywords: Caenorhabditis elegans ; ifg-1 ; eIF4G; healthspan; lifespan; proteostasis

References

  1. EMBO J. 2013 May 15;32(10):1451-68 - PubMed
  2. Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14914-9 - PubMed
  3. Cell. 2009 Oct 2;139(1):149-60 - PubMed
  4. Nat Rev Mol Cell Biol. 2005 Apr;6(4):318-27 - PubMed
  5. PLoS Genet. 2007 Apr 6;3(4):e56 - PubMed
  6. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4264-9 - PubMed
  7. Cell. 2006 Aug 25;126(4):727-39 - PubMed
  8. Aging Cell. 2013 Dec;12(6):1073-81 - PubMed
  9. Genetics. 2012 May;191(1):107-18 - PubMed
  10. Antioxid Redox Signal. 2008 Jan;10(1):65-75 - PubMed
  11. EMBO J. 2008 Apr 9;27(7):1049-59 - PubMed
  12. Mol Cell. 2007 Nov 9;28(3):501-12 - PubMed
  13. Cell Death Differ. 2008 Aug;15(8):1232-42 - PubMed
  14. Aging Cell. 2007 Feb;6(1):111-9 - PubMed
  15. Cell Metab. 2011 Jul 6;14(1):55-66 - PubMed
  16. Trends Cell Biol. 2008 May;18(5):228-35 - PubMed
  17. Aging Cell. 2005 Jun;4(3):119-25 - PubMed
  18. Mol Cell. 2014 Feb 20;53(4):562-76 - PubMed
  19. Cold Spring Harb Perspect Biol. 2012 Dec 01;4(12):null - PubMed
  20. Methods Mol Biol. 2015;1292:215-34 - PubMed
  21. Nat Rev Mol Cell Biol. 2007 Jul;8(7):519-29 - PubMed
  22. Oncogene. 2004 Apr 1;23(14):2484-98 - PubMed
  23. Cell. 2013 Jun 20;153(7):1435-47 - PubMed
  24. Mol Cell Proteomics. 2013 Dec;12 (12 ):3624-39 - PubMed
  25. J Biol Chem. 2001 Nov 23;276(47):43557-63 - PubMed
  26. Cell. 2008 Apr 18;133(2):292-302 - PubMed
  27. Nature. 2010 Mar 25;464(7288):504-12 - PubMed
  28. Genome Biol. 2001;2(1):RESEARCH0002 - PubMed
  29. RNA. 2006 May;12(5):775-89 - PubMed
  30. FEMS Yeast Res. 2014 May;14(3):481-94 - PubMed
  31. Mol Cell. 2015 Aug 20;59(4):639-50 - PubMed
  32. Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2271-80 - PubMed
  33. Aging Cell. 2011 Apr;10(2):185-90 - PubMed
  34. Aging Cell. 2007 Feb;6(1):95-110 - PubMed
  35. Cell Metab. 2010 Jun 9;11(6):453-65 - PubMed
  36. J Cell Biol. 2008 Apr 21;181(2):293-307 - PubMed
  37. PLoS One. 2011;6(9):e24444 - PubMed
  38. Trends Biochem Sci. 2013 Dec;38(12):585-91 - PubMed
  39. Cancer Res. 1997 Nov 15;57(22):5041-4 - PubMed
  40. J Biol Chem. 2012 Oct 5;287(41):34264-72 - PubMed
  41. Aging Cell. 2007 Jun;6(3):307-17 - PubMed
  42. Int J Cancer. 2002 Mar 10;98(2):181-5 - PubMed
  43. J Gen Physiol. 2006 Oct;128(4):443-59 - PubMed
  44. Genome Res. 2008 Apr;18(4):564-70 - PubMed
  45. Nature. 2011 Jul 20;475(7356):324-32 - PubMed

Publication Types

Grant support