Display options
Share it on

Front Plant Sci. 2016 Jul 25;7:1063. doi: 10.3389/fpls.2016.01063. eCollection 2016.

Water Deficit Affects Primary Metabolism Differently in Two Lolium multiflorum/Festuca arundinacea Introgression Forms with a Distinct Capacity for Photosynthesis and Membrane Regeneration.

Frontiers in plant science

Dawid Perlikowski, Mariusz Czyżniejewski, Łukasz Marczak, Adam Augustyniak, Arkadiusz Kosmala

Affiliations

  1. Institute of Plant Genetics, Polish Academy of Science Pozna?, Poland.
  2. Institute of Bioorganic Chemistry, Polish Academy of Sciences Pozna?, Poland.

PMID: 27504113 PMCID: PMC4958636 DOI: 10.3389/fpls.2016.01063

Abstract

Understanding how plants respond to drought at different levels of cell metabolism is an important aspect of research on the mechanisms involved in stress tolerance. Furthermore, a dissection of drought tolerance into its crucial components by the use of plant introgression forms facilitates to analyze this trait more deeply. The important components of plant drought tolerance are the capacity for photosynthesis under drought conditions, and the ability of cellular membrane regeneration after stress cessation. Two closely related introgression forms of Lolium multiflorum/Festuca arundinacea, differing in the level of photosynthetic capacity during stress, and in the ability to regenerate their cellular membranes after stress cessation, were used as forage grass models in a primary metabolome profiling and in an evaluation of chloroplast 1,6-bisphosphate aldolase accumulation level and activity, during 11 days of water deficit, followed by 10 days of rehydration. It was revealed here that the introgression form, characterized by the ability to regenerate membranes after rehydration, contained higher amounts of proline, melibiose, galactaric acid, myo-inositol and myo-inositol-1-phosphate involved in osmoprotection and stress signaling under drought. Moreover, during the rehydration period, this form also maintained elevated accumulation levels of most the primary metabolites, analyzed here. The other introgression form, characterized by the higher capacity for photosynthesis, revealed a higher accumulation level and activity of chloroplast aldolase under drought conditions, and higher accumulation levels of most photosynthetic products during control and drought periods. The potential impact of the observed metabolic alterations on cellular membrane recovery after stress cessation, and on a photosynthetic capacity under drought conditions in grasses, are discussed.

Keywords: chloroplast aldolase; drought; forage grasses; membrane regeneration; photosynthetic activity; primary metabolites

References

  1. Trends Plant Sci. 2001 Sep;6(9):431-8 - PubMed
  2. Metab Eng. 2002 Jan;4(1):49-56 - PubMed
  3. Plant Cell Environ. 2002 Feb;25(2):163-171 - PubMed
  4. Plant Cell Environ. 2002 Feb;25(2):239-250 - PubMed
  5. Plant Cell Environ. 2002 Feb;25(2):275-294 - PubMed
  6. Ann Bot. 2002 Feb;89(2):183-9 - PubMed
  7. Ann Bot. 2002 Jun;89 Spec No:871-85 - PubMed
  8. Plant Physiol. 1997 Nov;115(3):1211-1219 - PubMed
  9. FASEB J. 2002 Nov;16(13):1738-48 - PubMed
  10. Plant Physiol. 2003 Aug;132(4):2218-29 - PubMed
  11. Plant Biol (Stuttg). 2004 May;6(3):269-79 - PubMed
  12. J Exp Bot. 2004 Sep;55(405):1981-7 - PubMed
  13. Photosynth Res. 2003;75(1):1-10 - PubMed
  14. Plant Physiol. 1968 Mar;43(3):401-4 - PubMed
  15. Plant Physiol. 1968 May;43(5):793-8 - PubMed
  16. New Phytol. 2006;172(1):73-82 - PubMed
  17. Ann Bot. 2007 Jan;99(1):3-8 - PubMed
  18. J Biol Chem. 1949 Feb;177(2):859-72 - PubMed
  19. Plant Mol Biol. 2008 Mar;66(4):329-43 - PubMed
  20. J Exp Bot. 2008;59(12):3327-46 - PubMed
  21. Plant Biotechnol J. 2009 Oct;7(8):719-32 - PubMed
  22. Ann Bot. 2010 May;105(5):661-76 - PubMed
  23. J Exp Bot. 2010 Aug;61(13):3509-17 - PubMed
  24. Physiol Plant. 2012 Mar;144(3):238-53 - PubMed
  25. J Exp Bot. 2012 May;63(8):3001-9 - PubMed
  26. J Exp Bot. 2012 Oct;63(17):6161-72 - PubMed
  27. Plant Cell Environ. 2013 May;36(5):1037-55 - PubMed
  28. BMC Bioinformatics. 2013;14 Suppl 1:S7 - PubMed
  29. PLoS One. 2013 May 22;8(5):e63637 - PubMed
  30. Plant Biol (Stuttg). 2014 Mar;16(2):385-94 - PubMed
  31. Plant Biol (Stuttg). 2014 Jan;16(1):1-8 - PubMed
  32. Mol Biotechnol. 2014 Mar;56(3):248-57 - PubMed
  33. Tree Physiol. 2014 Nov;34(11):1203-19 - PubMed
  34. Cell Mol Life Sci. 2015 Feb;72(4):673-89 - PubMed
  35. Nat Commun. 2014 Oct 31;5:5302 - PubMed
  36. Plant Sci. 2014 Dec;229:247-261 - PubMed
  37. Sci Rep. 2015 Feb 27;5:8630 - PubMed
  38. Ann Bot. 2015 Nov;116(6):1001-15 - PubMed
  39. Plant Biotechnol J. 2016 Feb;14(2):592-602 - PubMed
  40. PLoS One. 2015 Sep 08;10(9):e0136902 - PubMed
  41. J Plant Physiol. 2015 Sep 15;189:126-36 - PubMed
  42. Front Plant Sci. 2016 Jul 19;7:1027 - PubMed
  43. Plant J. 1998 Apr;14(2):147-57 - PubMed

Publication Types