Display options
Share it on

Electron Physician. 2016 Jun 25;8(6):2576-85. doi: 10.19082/2576. eCollection 2016 Jun.

Visual Detection of Enterohemorrhagic Escherichia coli O157:H7 Using Loop-Mediated Isothermal Amplification.

Electronic physician

Reza Ranjbar, Maryam Erfanmanesh, Davoud Afshar, Mohsen Mohammadi, Omar Ghaderi, Ali Haghnazari

Affiliations

  1. Ph.D. of Medical Bacteriology, Professor, Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
  2. M.Sc. of Biotechnology, Department of Agriculture and Plant Breeding, Faculty of Agriculture, Zanjan University, Zanjan, Iran.
  3. Ph.D. of Medical Bacteriology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
  4. Ph.D. of Pharmaceutical Biotechnology, Assistant Professor, Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
  5. Ph.D. Candidate of Pharmaceutical Biotechnology, Department of Pharmaceutical Biotechnology, Tehran University of Medical Sciences, Tehran, Iran.
  6. Department of Agriculture and Plant Breeding, Faculty of Agriculture, Zanjan University, Zanjan, Iran.

PMID: 27504175 PMCID: PMC4965210 DOI: 10.19082/2576

Abstract

INTRODUCTION: Escherichia coli O157:H7, an important foodborne pathogen, can cause serious renal damage, which can also lead to mortality. Since a rapid and sensitive method is needed to identify this pathogenic agent, we evaluated Loop-Mediated Isothermal Amplification Assay (LAMP) to detect Escherichia coli O157:H7.

METHODS: We used six primers that specifically identified the rfbE gene. To examine the sensitivity of the method, different dilutions were subjected to the LAMP reaction. Other bacterial strains also were investigated to determine the specificity of the test. The turbidity of the amplified products was assayed by visual detection. The amplified products were detected by addition of SYBR Green II to the reaction tubes.

RESULTS: Amplification products were observed as a ladder-like pattern on the agarose gel. A white turbidity emerged in the positive tubes. Under UV light, the positive samples were green, whereas the negative samples were orange. The detection limit of the LAMP was 78 pg/tube, and this indicated that it was 100 times more sensitive than PCR for the detection of EHEC. No LAMP products were detected when template DNA of non-EHEC strains were used, suggesting high specificity of the LAMP assay.

CONCLUSION: The results indicated that the LAMP assay is a valuable diagnostic assay to identify EHEC O157:H7. In addition, the simplicity, sensitivity, specificity, and rapidity of this assay make it a useful method to diagnose pathogens in primary labs without any need for expensive equipment or specialized techniques.

Keywords: Enterohemorrhagic Escherichia coli O157:H7; Loop-Mediated Isothermal Amplification; SYBR Green II; rfbE gene

References

  1. Nucleic Acids Res. 2000 Jun 15;28(12):E63 - PubMed
  2. Appl Environ Microbiol. 2010 Jan;76(1):60-8 - PubMed
  3. J Clin Microbiol. 1998 Jun;36(6):1801-4 - PubMed
  4. Lancet. 2005 Mar 19-25;365(9464):1073-86 - PubMed
  5. Arch Virol. 2006 Jun;151(6):1093-106 - PubMed
  6. Lancet. 1983 Dec 3;2(8362):1299-1300 - PubMed
  7. Clin Microbiol Rev. 1998 Jan;11(1):142-201 - PubMed
  8. Mol Cell Probes. 2002 Jun;16(3):223-9 - PubMed
  9. Appl Environ Microbiol. 2001 Jul;67(7):2908-15 - PubMed
  10. J Virol Methods. 2008 Aug;151(2):264-70 - PubMed
  11. Nat Protoc. 2008;3(5):877-82 - PubMed
  12. Water Res. 2007 Mar;41(6):1280-6 - PubMed
  13. J Clin Microbiol. 2005 Apr;43(4):1581-6 - PubMed
  14. Infect Immun. 1984 Apr;44(1):157-61 - PubMed
  15. Can J Vet Res. 2011 Apr;75(2):81-8 - PubMed
  16. Clin Chem. 2001 Sep;47(9):1742-3 - PubMed
  17. Int J Med Microbiol. 2005 Oct;295(6-7):405-18 - PubMed
  18. Appl Microbiol Biotechnol. 2010 Feb;85(5):1533-40 - PubMed
  19. N Engl J Med. 1983 Mar 24;308(12):681-5 - PubMed
  20. Biochem Biophys Res Commun. 2001 Nov 23;289(1):150-4 - PubMed
  21. J Clin Microbiol. 1998 Feb;36(2):598-602 - PubMed
  22. Lett Appl Microbiol. 2001 Mar;32(3):171-5 - PubMed
  23. J Food Prot. 2005 Jan;68(1):146-9 - PubMed
  24. FEBS Lett. 2010 Jan 4;584(1):194-8 - PubMed
  25. Epidemiol Rev. 1991;13:60-98 - PubMed
  26. J Food Prot. 2005 Oct;68(10):2140-3 - PubMed
  27. Int J Food Microbiol. 2008 Feb 29;122(1-2):156-61 - PubMed
  28. Mol Biol Rep. 2010 Jun;37(5):2183-8 - PubMed
  29. J Virol Methods. 2010 Aug;167(2):214-7 - PubMed
  30. J Appl Microbiol. 1997 May;82(5):537-51 - PubMed
  31. N Engl J Med. 1994 Sep 1;331(9):579-84 - PubMed
  32. Int J Food Microbiol. 1996 Sep;32(1-2):103-13 - PubMed
  33. Biochem Biophys Res Commun. 2002 Feb 1;290(4):1195-8 - PubMed
  34. Meat Sci. 2011 Aug;88(4):767-73 - PubMed
  35. Appl Environ Microbiol. 2003 Aug;69(8):5023-8 - PubMed
  36. J Clin Microbiol. 1995 Oct;33(10):2616-9 - PubMed
  37. N Engl J Med. 1987 Dec 10;317(24):1496-500 - PubMed
  38. J Virol Methods. 2010 Dec;170(1-2):30-6 - PubMed
  39. Iran Red Crescent Med J. 2012 Jul;14(7):408-16 - PubMed
  40. Nucleic Acids Res. 1998 Feb 15;26(4):1026-31 - PubMed
  41. Emerg Infect Dis. 1999 Sep-Oct;5(5):607-25 - PubMed
  42. Arch Iran Med. 2012 May;15(5):312-6 - PubMed
  43. J Clin Microbiol. 2008 Aug;46(8):2800-4 - PubMed
  44. FEMS Microbiol Lett. 2005 Feb 1;243(1):259-63 - PubMed
  45. Anal Biochem. 2001 Feb 15;289(2):281-8 - PubMed
  46. J Clin Microbiol. 2005 Jun;43(6):2895-903 - PubMed
  47. Ann Clin Microbiol Antimicrob. 2013 Apr 29;12:8 - PubMed

Publication Types