Display options
Share it on

ACS Cent Sci. 2016 Jul 27;2(7):445-55. doi: 10.1021/acscentsci.6b00053. Epub 2016 Jun 10.

Deciphering the Interplay among Multisite Phosphorylation, Interaction Dynamics, and Conformational Transitions in a Tripartite Protein System.

ACS central science

Philip Lössl, Andrea M Brunner, Fan Liu, Aneika C Leney, Masami Yamashita, Richard A Scheltema, Albert J R Heck

Affiliations

  1. Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584CH Utrecht, The Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584CH Utrecht, The Netherlands.
  2. Department of Structural Cell Biology, Max Planck Institute of Biochemistry , Am Klopferspitz 18, 82152 Martinsried, Germany.

PMID: 27504491 PMCID: PMC4965854 DOI: 10.1021/acscentsci.6b00053

Abstract

Multisite phosphorylation is a common pathway to regulate protein function, activity, and interaction pattern in vivo, but routine biochemical analysis is often insufficient to identify the number and order of individual phosphorylation reactions and their mechanistic impact on the protein behavior. Here, we integrate complementary mass spectrometry (MS)-based approaches to characterize a multisite phosphorylation-regulated protein system comprising Polo-like kinase 1 (Plk1) and its coactivators Aurora kinase A (Aur-A) and Bora, the interplay of which is essential for mitotic entry after DNA damage-induced cell cycle arrest. Native MS and cross-linking-MS revealed that Aur-A/Bora-mediated Plk1 activation is accompanied by the formation of Aur-A/Bora and Plk1/Bora heterodimers. We found that the Aur-A/Bora interaction is independent of the Bora phosphorylation state, whereas the Plk1/Bora interaction is dependent on extensive Bora multisite phosphorylation. Bottom-up and top-down proteomics analyses showed that Bora multisite phosphorylation proceeds via a well-ordered sequence of site-specific phosphorylation reactions, whereby we could reveal the involvement of up to 16 phosphorylated Bora residues. Ion mobility spectrometry-MS demonstrated that this multisite phosphorylation primes a substantial structural rearrangement of Bora, explaining the interdependence between extensive Bora multisite phosphorylation and Plk1/Bora complex formation. These results represent a first benchmark of our multipronged MS strategy, highlighting its potential to elucidate the mechanistic and structural implications of multisite protein phosphorylation.

References

  1. Nat Struct Mol Biol. 2013 Sep;20(9):1047-53 - PubMed
  2. J Cell Biol. 2009 Apr 20;185(2):193-202 - PubMed
  3. EMBO J. 2006 May 3;25(9):1987-96 - PubMed
  4. Open Biol. 2013 Mar 13;3(3):120179 - PubMed
  5. Trends Biochem Sci. 2000 Dec;25(12):596-601 - PubMed
  6. Nat Chem. 2014 Apr;6(4):281-94 - PubMed
  7. Nat Rev Cancer. 2004 Oct;4(10 ):793-805 - PubMed
  8. J Cell Sci. 2014 Feb 15;127(Pt 4):801-11 - PubMed
  9. J Am Chem Soc. 2011 Oct 12;133(40):15842-5 - PubMed
  10. Nature. 2011 Oct 12;480(7375):128-31 - PubMed
  11. Mol Cell. 2000 Sep;6(3):539-50 - PubMed
  12. Chem Biol. 2008 May;15(5):459-66 - PubMed
  13. Mol Cell. 2003 Oct;12(4):851-62 - PubMed
  14. Nat Struct Mol Biol. 2013 Dec;20(12):1415-24 - PubMed
  15. Mol Cell Biol. 2005 Dec;25(23):10580-90 - PubMed
  16. J Am Chem Soc. 2014 May 21;136(20):7295-9 - PubMed
  17. Chem Biol. 2013 Nov 21;20(11):1411-20 - PubMed
  18. Trends Biochem Sci. 2002 Dec;27(12):619-27 - PubMed
  19. Nature. 2001 Nov 29;414(6863):514-21 - PubMed
  20. Expert Opin Ther Targets. 2015 Feb;19(2):187-200 - PubMed
  21. Chem Soc Rev. 2010 May;39(5):1633-55 - PubMed
  22. Proteomics. 2014 May;14(10):1130-40 - PubMed
  23. Nat Methods. 2012 Nov;9(11):1084-6 - PubMed
  24. Nat Commun. 2013;4:1985 - PubMed
  25. Chromosoma. 2008 Oct;117(5):457-69 - PubMed
  26. Dev Cell. 2006 Aug;11(2):147-57 - PubMed
  27. Cell. 2001 Dec 28;107(7):819-22 - PubMed
  28. Nature. 2008 Sep 4;455(7209):119-23 - PubMed
  29. Mol Cell Proteomics. 2016 Mar;15(3):776-90 - PubMed
  30. J Cell Biol. 2015 Mar 16;208(6):661-9 - PubMed
  31. Angew Chem Int Ed Engl. 2014 Sep 1;53(36):9660-4 - PubMed
  32. Nat Rev Drug Discov. 2009 Jul;8(7):547-66 - PubMed
  33. Science. 2008 Jun 20;320(5883):1655-8 - PubMed
  34. J Am Soc Mass Spectrom. 2016 Feb;27(2):220-32 - PubMed
  35. Anal Chem. 2011 Sep 1;83(17):6868-74 - PubMed
  36. Cell Cycle. 2013 Mar 15;12 (6):953-60 - PubMed
  37. Expert Rev Proteomics. 2014 Dec;11(6):733-43 - PubMed
  38. Cell Cycle. 2014;13(11):1727-36 - PubMed
  39. J Cell Biol. 2008 Apr 7;181(1):65-78 - PubMed
  40. Anal Chem. 2015 Apr 21;87(8):4152-8 - PubMed
  41. J Proteomics. 2016 Feb 16;134:138-43 - PubMed
  42. Cancer Res. 2004 Jan 1;64(1):262-72 - PubMed
  43. Protein Sci. 2014 Jun;23(6):747-59 - PubMed
  44. Expert Rev Neurother. 2015 Jan;15(1):115-22 - PubMed

Publication Types