Display options
Share it on

Nat Commun. 2016 Aug 19;7:12385. doi: 10.1038/ncomms12385.

Néel-like domain walls in ferroelectric Pb(Zr,Ti)O3 single crystals.

Nature communications

Xian-Kui Wei, Chun-Lin Jia, Tomas Sluka, Bi-Xia Wang, Zuo-Guang Ye, Nava Setter

Affiliations

  1. Ceramics Laboratory, EPFL-Swiss Federal Institute of Technology, Lausanne 1015, Switzerland.
  2. Peter Grünberg Institute and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
  3. The School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
  4. Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6.
  5. Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China.

PMID: 27539075 PMCID: PMC4992163 DOI: 10.1038/ncomms12385

Abstract

In contrast to the flexible rotation of magnetization direction in ferromagnets, the spontaneous polarization in ferroelectric materials is highly confined along the symmetry-allowed directions. Accordingly, chirality at ferroelectric domain walls was treated only at the theoretical level and its real appearance is still a mystery. Here we report a Néel-like domain wall imaged by atom-resolved transmission electron microscopy in Ti-rich ferroelectric Pb(Zr1-xTix)O3 crystals, where nanometre-scale monoclinic order coexists with the tetragonal order. The formation of such domain walls is interpreted in the light of polarization discontinuity and clamping effects at phase boundaries between the nesting domains. Phase-field simulation confirms that the coexistence of both phases as encountered near the morphotropic phase boundary promotes the polarization to rotate in a continuous manner. Our results provide a further insight into the complex domain configuration in ferroelectrics, and establish a foundation towards exploring chiral domain walls in ferroelectrics.

References

  1. Science. 2011 Mar 18;331(6023):1420-3 - PubMed
  2. Acta Crystallogr B. 2011 Oct;67(Pt 5):386-98 - PubMed
  3. Nat Mater. 2009 Mar;8(3):229-34 - PubMed
  4. Philos Trans A Math Phys Eng Sci. 2009 Sep 28;367(1903):3735-53 - PubMed
  5. Nat Commun. 2013;4:1808 - PubMed
  6. Nat Commun. 2014;5:3031 - PubMed
  7. Ultramicroscopy. 2002 Aug;92(3-4):233-42 - PubMed
  8. Phys Rev Lett. 2013 Apr 26;110(17):177204 - PubMed
  9. Nat Nanotechnol. 2010 Feb;5(2):143-7 - PubMed
  10. Nat Mater. 2003 Jan;2(1):43-7 - PubMed
  11. Nat Commun. 2015 Apr 14;6:6661 - PubMed
  12. Nat Mater. 2013 Jul;12(7):611-6 - PubMed
  13. Nano Lett. 2015 Dec 9;15(12):8049-55 - PubMed
  14. Nat Nanotechnol. 2015 Jul;10(7):614-8 - PubMed
  15. Nat Mater. 2008 Jan;7(1):57-61 - PubMed
  16. Nano Lett. 2011 Feb 9;11(2):828-34 - PubMed
  17. Phys Rev Lett. 2014 Jun 20;112(24):247603 - PubMed
  18. Nat Commun. 2011 Jul 26;2:404 - PubMed
  19. Nat Commun. 2013;4:2671 - PubMed
  20. Nano Lett. 2015 Oct 14;15(10):6506-13 - PubMed
  21. Phys Rev Lett. 2002 Aug 5;89(6):067601 - PubMed
  22. Science. 2015 May 1;348(6234):547-51 - PubMed
  23. Phys Rev Lett. 2011 Jul 29;107(5):057602 - PubMed
  24. Science. 2003 Feb 7;299(5608):870-3 - PubMed
  25. Nat Commun. 2014;5:3120 - PubMed
  26. Nat Commun. 2014 Oct 24;5:5231 - PubMed
  27. Phys Rev Lett. 2010 Nov 12;105(20):207601 - PubMed

Publication Types