Display options
Share it on

J Exp Orthop. 2016 Dec;3(1):18. doi: 10.1186/s40634-016-0054-4. Epub 2016 Aug 19.

Intra-articular interleukin-1 receptor antagonist (IL1-ra) microspheres for posttraumatic osteoarthritis: in vitro biological activity and in vivo disease modifying effect.

Journal of experimental orthopaedics

Khaled A Elsaid, Anand Ubhe, Ziyad Shaman, Gerard D'Souza

Affiliations

  1. Department of Pharmaceutical Sciences, School of Pharmacy-Boston, MCPHS University, Boston, MA, USA. [email protected].
  2. Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA. [email protected].
  3. Department of Pharmaceutical Sciences, School of Pharmacy-Boston, MCPHS University, Boston, MA, USA.

PMID: 27539076 PMCID: PMC4990523 DOI: 10.1186/s40634-016-0054-4

Abstract

BACKGROUND: Interleukin-1 receptor antagonist (IL-1 ra) can be disease-modifying in posttraumatic osteoarthritis (PTOA). One limitation is its short joint residence time. We hypothesized that IL-1 ra encapsulation in poly (lactide-co-glycolide) (PLGA) microspheres reduces IL-1 ra systemic absorption and provides an enhanced anti-PTOA effect.

METHODS: IL-1 ra release kinetics and biological activity: IL-1 ra encapsulation into PLGA microsphere was performed using double emulsion solvent extraction. Lyophilized PLGA IL-1 ra microspheres were resuspended in PBS and supernatant IL-1 ra concentrations were assayed. The biological activity of IL-1 ra from PLGA IL-1 ra microspheres was performed using IL-1 induced lymphocyte proliferation and bovine articular cartilage degradation assays. Systemic absorption of IL-1 ra following intra-articular (IA) injection of PLGA IL-1 ra or IL-1 ra: At 1, 3, 6, 12 and 24 h following injection of 50 μl PLGA IL-1 ra (n = 6) or IL-1 ra (n = 6), serum samples were collected and IL-1 ra concentrations were determined. Anterior cruciate ligament transection (ACLT) and IA dosing: ACLT was performed in 8-10 week old male Lewis rats (n = 42). PBS (50 μl; n = 9), IL-1 ra (50 μl; 5 mg/ml; n = 13), PLGA IL-1 ra (50 μl; equivalent to 5 mg/ml IL-1 ra; n = 14) or PLGA particles (50 μl; n = 6) treatments were performed on days 7, 14, 21 and 28 following ACLT. Cartilage and synovial histopathology: On day 35, animal ACLT joints were harvested and tibial cartilage and synovial histopathology scoring was performed.

RESULTS: Percent IL-1 ra content in the supernatant at 6 h was 13.44 ± 9.27 % compared to 34.16 ± 12.04 %, 47.89 ± 12.71 %, 57.14 ± 11.71 %, and 93.90 ± 8.50 % at 12, 24, 48 and 72 h, respectively. PLGA IL-1 ra inhibited lymphocyte proliferation and cartilage degradation similar to IL-1 ra. Serum IL-1 ra levels were significantly lower at 1, 3, and 6 h following PLGA IL-1 ra injection compared to IL-1 ra. Cartilage and synovial histopathology scores were significantly lower in the PLGA IL-1 ra group compared to PBS and PLGA groups (p < 0.001).

CONCLUSIONS: IL-1 ra encapsulation in PLGA microspheres is feasible with no alteration to IL-1 ra biological activity. PLGA IL-1 ra exhibited an enhanced disease-modifying effect in a PTOA model compared to similarly dosed IL-1 ra.

Keywords: Bioactivity of IL1ra; IL1 ra microspheres; Interleukin-1 receptor antagonist; Posttraumatic osteoarthritis

References

  1. Pharm Res. 2000 Oct;17(10):1159-67 - PubMed
  2. Eur J Pharm Biopharm. 2012 Nov;82(3):457-64 - PubMed
  3. Arthritis Res Ther. 2009;11(3):R72 - PubMed
  4. J Immunol Methods. 1990 Dec 31;135(1-2):25-32 - PubMed
  5. Clin Immunol. 2014 Mar;151(1):43-54 - PubMed
  6. Clin Exp Rheumatol. 2008 Jul-Aug;26(4):561-7 - PubMed
  7. Osteoarthritis Cartilage. 2006 Jan;14(1):13-29 - PubMed
  8. Adv Drug Deliv Rev. 2005 Jan 10;57(3):377-90 - PubMed
  9. Arthritis Rheum. 1996 Sep;39(9):1535-44 - PubMed
  10. Arthritis Rheum. 2008 Jun;58(6):1707-15 - PubMed
  11. Arthritis Rheum. 2009 Mar 15;61(3):344-52 - PubMed
  12. Colloids Surf B Biointerfaces. 2015 Jan 1;125:51-7 - PubMed
  13. J Orthop Res. 2011 May;29(5):694-703 - PubMed
  14. J Control Release. 2007 Nov 6;123(2):123-30 - PubMed
  15. Br J Clin Pharmacol. 1994 Oct;38(4):349-55 - PubMed
  16. Arthritis Res Ther. 2011 Jul 29;13(4):R125 - PubMed
  17. Arthritis Rheum. 2007 Nov;56(11):3650-61 - PubMed
  18. Curr Opin Rheumatol. 2008 Sep;20(5):565-72 - PubMed
  19. Arthritis Rheum. 2012 Apr;64(4):1162-71 - PubMed
  20. Biotechnol Bioeng. 2012 Jul;109(7):1835-43 - PubMed
  21. Bone. 2001 Sep;29(3):209-15 - PubMed
  22. Int J Pharm. 2008 Dec 8;364(2):298-327 - PubMed
  23. Bone. 2012 Aug;51(2):249-57 - PubMed
  24. J Biomed Mater Res B Appl Biomater. 2011 May;97(2):355-63 - PubMed
  25. Arthritis Res Ther. 2010;12(6):R229 - PubMed
  26. Int Orthop. 2006 Feb;30(1):43-7 - PubMed
  27. J Microencapsul. 2008 Aug;25(5):339-50 - PubMed
  28. Biomaterials. 2009 Mar;30(9):1772-80 - PubMed
  29. Nat Rev Rheumatol. 2014 Jan;10(1):11-22 - PubMed
  30. Methods Mol Med. 2007;135:201-9 - PubMed
  31. Osteoarthritis Cartilage. 2012 Aug;20(8):940-8 - PubMed
  32. Eur J Pharm Biopharm. 2015 Jun;93:110-7 - PubMed
  33. Knee Surg Sports Traumatol Arthrosc. 1994;2(1):38-44 - PubMed
  34. Ann Rheum Dis. 2005 Aug;64(8):1132-6 - PubMed
  35. Knee. 2003 Mar;10 (1):93-6 - PubMed
  36. AAPS J. 2012 Mar;14(1):97-104 - PubMed
  37. Osteoarthritis Cartilage. 2015 Jan;23(1):114-21 - PubMed
  38. Osteoarthritis Cartilage. 2012 Dec;20(12):1484-99 - PubMed
  39. Int J Pharm. 2012 Nov 1;437(1-2):20-8 - PubMed
  40. Arthritis Res Ther. 2014 Jun 25;16(3):R134 - PubMed
  41. Arthritis Res Ther. 2012 Aug 03;14(4):R179 - PubMed

Publication Types

Grant support