Display options
Share it on

PLoS One. 2016 Sep 27;11(9):e0162921. doi: 10.1371/journal.pone.0162921. eCollection 2016.

A Positive Selection for Nucleoside Kinases in E. coli.

PloS one

Nirav Y Shelat, Sidhartha Parhi, Marc Ostermeier

Affiliations

  1. Chemical Biology Interface Graduate Program, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, United States of America.
  2. Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, United States of America.

PMID: 27677184 PMCID: PMC5038940 DOI: 10.1371/journal.pone.0162921

Abstract

Engineering heterologous nucleoside kinases inside E. coli is a difficult process due to the integral role nucleosides play in cell division and transcription. Nucleoside analogs are used in many kinase screens that depend on cellular metabolization of the analogs. However, metabolic activation of these analogs can be toxic through disruptions of DNA replication and transcription because of the analogs' structural similarities to native nucleosides. Furthermore, the activity of engineered kinases can be masked by endogenous kinases in the cytoplasm, which leads to more difficulties in assessing target activity. A positive selection method that can discern a heterologous kinases' enzymatic activity without significantly influencing the cell's normal metabolic systems would be beneficial. We have developed a means to select for a nucleoside kinase's activity by transporting the kinase to the periplasmic space of an E. coli strain that has its PhoA alkaline phosphatase knocked out. Our proof-of-principle studies demonstrate that the herpes simplex virus thymidine kinase (HSV-TK) can be transported to the periplasmic space in functional form by attaching a tat-signal sequence to the N-terminus of the protein. HSV-TK phosphorylates the toxic nucleoside analog 3'-azido-3'-deoxythymidine (AZT), and this charged, monophosphate form of AZT cannot cross the inner membrane. The translocation of HSV-TK provides significant resistance to AZT when compared to bacteria lacking a periplasmic HSV-TK. However, resistance decreased dramatically above 40 μg/ml AZT. We propose that this threshold can be used to select for higher activity variants of HSV-TK and other nucleoside kinases in a manner that overcomes the efficiency and localization issues of previous selection schemes. Furthermore, our selection strategy should be a general strategy to select or evaluate nucleoside kinases that phosphorylate nucleosides such as prodrugs that would otherwise be toxic to E. coli.

Conflict of interest statement

The authors have declared that no competing interests exist.

References

  1. Nat Rev Drug Discov. 2013 Jun;12(6):447-64 - PubMed
  2. Annu Rev Microbiol. 2006;60:373-95 - PubMed
  3. J Bacteriol. 1993 Sep;175(18):6049-51 - PubMed
  4. Org Biomol Chem. 2005 Feb 7;3(3):462-70 - PubMed
  5. Nucleic Acids Res. 2011 Feb;39(3):e12 - PubMed
  6. J Nucl Med. 2010 Sep;51(9):1395-403 - PubMed
  7. Cancer Lett. 2008 Nov 8;270(2):191-201 - PubMed
  8. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4012-6 - PubMed
  9. J Biol Chem. 1967 Sep 10;242(17):3905-11 - PubMed
  10. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3525-9 - PubMed
  11. Front Microbiol. 2015 Apr 30;6:402 - PubMed
  12. Biochemistry. 2010 Aug 10;49(31):6784-90 - PubMed
  13. Anticancer Drug Des. 1999 Dec;14(6):517-38 - PubMed
  14. Cancer Res. 1997 Oct 15;57(20):4537-44 - PubMed
  15. Mol Biochem Parasitol. 2001 Aug;116(1):85-8 - PubMed
  16. Open Biochem J. 2008;2:60-6 - PubMed
  17. Appl Environ Microbiol. 2005 Aug;71(8):4339-44 - PubMed
  18. PLoS One. 2014 Nov 26;9(11):e114032 - PubMed
  19. J Biol Chem. 1992 Apr 5;267(10):6584-9 - PubMed
  20. J Bacteriol. 2007 Mar;189(6):2435-42 - PubMed
  21. J Biol Chem. 1965 Sep;240(9):3685-92 - PubMed
  22. Biochim Biophys Acta. 2009 May;1794(5):808-16 - PubMed
  23. Oncogene. 2008 Oct 27;27(50):6522-37 - PubMed
  24. Annu Rev Microbiol. 1998;52:591-625 - PubMed
  25. J Bacteriol. 1983 Jan;153(1):241-52 - PubMed
  26. Methods Mol Biol. 2014;1116:103-17 - PubMed
  27. Biochemistry. 1993 Nov 2;32(43):11618-26 - PubMed
  28. N Biotechnol. 2008 Jun;25(1):49-54 - PubMed
  29. Antiviral Res. 2010 Apr;86(1):101-20 - PubMed
  30. Antivir Chem Chemother. 2005;16(3):155-68 - PubMed
  31. Gene Ther. 2006 Sep;13(17 ):1309-12 - PubMed
  32. Nat Rev Cancer. 2003 May;3(5):330-8 - PubMed

Publication Types

Grant support