Display options
Share it on

Nat Commun. 2016 Sep 28;7:12761. doi: 10.1038/ncomms12761.

Irreversible inhibitors of the 3C protease of Coxsackie virus through templated assembly of protein-binding fragments.

Nature communications

Daniel Becker, Zuzanna Kaczmarska, Christoph Arkona, Robert Schulz, Carolin Tauber, Gerhard Wolber, Rolf Hilgenfeld, Miquel Coll, Jörg Rademann

Affiliations

  1. Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany.
  2. Institute for Research in Biomedicine, Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
  3. Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
  4. Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
  5. German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel Site, University of Lübeck, 23562 Lübeck, Germany.

PMID: 27677239 PMCID: PMC5052702 DOI: 10.1038/ncomms12761

Abstract

Small-molecule fragments binding to biomacromolecules can be starting points for the development of drugs, but are often difficult to detect due to low affinities. Here we present a strategy that identifies protein-binding fragments through their potential to induce the target-guided formation of covalently bound, irreversible enzyme inhibitors. A protein-binding nucleophile reacts reversibly with a bis-electrophilic warhead, thereby positioning the second electrophile in close proximity of the active site of a viral protease, resulting in the covalent de-activation of the enzyme. The concept is implemented for Coxsackie virus B3 3C protease, a pharmacological target against enteroviral infections. Using an aldehyde-epoxide as bis-electrophile, active fragment combinations are validated through measuring the protein inactivation rate and by detecting covalent protein modification in mass spectrometry. The structure of one enzyme-inhibitor complex is determined by X-ray crystallography. The presented warhead activation assay provides potent non-peptidic, broad-spectrum inhibitors of enteroviral proteases.

References

  1. Biochem Soc Trans. 2011 Oct;39(5):1371-5 - PubMed
  2. Chem Rev. 2006 Aug;106(8):3279-301 - PubMed
  3. Nat Commun. 2014 Nov 18;5:5170 - PubMed
  4. Biochem Biophys Res Commun. 2007 Jun 22;358(1):7-11 - PubMed
  5. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 - PubMed
  6. Chem Soc Rev. 2015 Apr 21;44(8):2455-88 - PubMed
  7. J Neurovirol. 2005 Oct;11(5):424-33 - PubMed
  8. Biochem J. 1982 Jan 1;201(1):189-98 - PubMed
  9. Curr Protein Pept Sci. 2007 Feb;8(1):19-27 - PubMed
  10. Expert Rev Anti Infect Ther. 2009 Aug;7(6):735-42 - PubMed
  11. Angew Chem Int Ed Engl. 2006 Feb 20;45(9):1435-9 - PubMed
  12. Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82 - PubMed
  13. J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 - PubMed
  14. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21 - PubMed
  15. J Chem Inf Model. 2005 Jan-Feb;45(1):160-9 - PubMed
  16. Nat Chem. 2011 Nov 23;3(12):909-10 - PubMed
  17. J Am Chem Soc. 2008 Oct 22;130(42):13820-1 - PubMed
  18. Nat Rev Drug Discov. 2002 Jan;1(1):26-36 - PubMed
  19. Nat Chem. 2010 Jun;2(6):490-7 - PubMed
  20. J Am Chem Soc. 2005 May 18;127(19):6964-5 - PubMed
  21. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42 - PubMed
  22. Angew Chem Int Ed Engl. 2009;48(34):6346-9 - PubMed
  23. Angew Chem Int Ed Engl. 2008;47(17):3275-8 - PubMed
  24. Chem Commun (Camb). 2014 Feb 25;50(16):2043-5 - PubMed
  25. J Chem Inf Model. 2009 Jan;49(1):84-96 - PubMed
  26. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55 - PubMed
  27. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9367-72 - PubMed
  28. Angew Chem Int Ed Engl. 2010 Sep 10;49(38):6817-20 - PubMed
  29. J Am Chem Soc. 2005 May 11;127(18):6686-92 - PubMed
  30. Clin Microbiol Rev. 2013 Jan;26(1):135-62 - PubMed
  31. Mol Divers. 2010 May;14(2):401-8 - PubMed
  32. Proteins. 2003 Sep 1;52(4):609-23 - PubMed
  33. Chem Soc Rev. 2014 Mar 21;43(6):1899-933 - PubMed
  34. Angew Chem Int Ed Engl. 2002 Mar 15;41(6):1053-7 - PubMed
  35. J Virol. 2011 Oct;85(19):10319-31 - PubMed
  36. Bioorg Med Chem Lett. 2008 Jul 15;18(14):3978-81 - PubMed
  37. J Antimicrob Chemother. 2008 Dec;62(6):1169-73 - PubMed
  38. Antiviral Res. 2011 Mar;89(3):204-18 - PubMed
  39. J Virol. 2011 Oct;85(20):10764-73 - PubMed
  40. ACS Chem Biol. 2011 Jul 15;6(7):724-32 - PubMed
  41. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 - PubMed
  42. Bioorg Med Chem Lett. 2006 Jan 1;16(1):36-9 - PubMed
  43. Trends Biotechnol. 2009 Sep;27(9):512-21 - PubMed
  44. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 - PubMed
  45. Biopolymers. 1999;51(1):99-107 - PubMed
  46. Chem Rev. 2006 Sep;106(9):3652-711 - PubMed
  47. J Biol Chem. 2009 Mar 20;284(12):7646-55 - PubMed

Publication Types