Display options
Share it on

Sci Rep. 2016 Sep 28;6:34154. doi: 10.1038/srep34154.

Non-cell autonomous cues for enhanced functionality of human embryonic stem cell-derived cardiomyocytes via maturation of sarcolemmal and mitochondrial K.

Scientific reports

Wendy Keung, Lihuan Ren, Sen Li, Andy On-Tik Wong, Anant Chopra, Chi-Wing Kong, Gordon F Tomaselli, Christopher S Chen, Ronald A Li

Affiliations

  1. Stem Cell &Regenerative Medicine Consortium, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong.
  2. Department of Physiology, The University of Hong Kong, Hong Kong.
  3. Department of Bioengineering, Boston University, Boston, MA, USA.
  4. Harvard Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA.
  5. Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, M.D., United States of America.
  6. Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaborations in Regenerative Medicine, The University of Hong Kong, Hong Kong.
  7. Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sweden.

PMID: 27677332 PMCID: PMC5039730 DOI: 10.1038/srep34154

Abstract

Human embryonic stem cells (hESCs) is a potential unlimited ex vivo source of ventricular (V) cardiomyocytes (CMs), but hESC-VCMs and their engineered tissues display immature traits. In adult VCMs, sarcolemmal (sarc) and mitochondrial (mito) ATP-sensitive potassium (K

References

  1. Biochem Biophys Res Commun. 2011 Dec 2;415(4):637-41 - PubMed
  2. Cardiovasc Res. 1999 Mar;41(3):629-40 - PubMed
  3. Biomaterials. 2013 Mar;34(10):2399-411 - PubMed
  4. Am J Physiol Cell Physiol. 2000 Nov;279(5):C1351-8 - PubMed
  5. N Engl J Med. 2001 Feb 15;344(7):501-9 - PubMed
  6. Nat Biotechnol. 2007 Sep;25(9):1015-24 - PubMed
  7. J Am Coll Cardiol. 2004 Sep 1;44(5):1103-10 - PubMed
  8. Science. 1995 Nov 17;270(5239):1166-70 - PubMed
  9. J Physiol. 1992 Feb;447:649-73 - PubMed
  10. Biomaterials. 2013 May;34(16):4013-26 - PubMed
  11. Stem Cells. 2006 Feb;24(2):236-45 - PubMed
  12. Circ Res. 2000 Nov 10;87(10):837-9 - PubMed
  13. Circ Res. 2001 Nov 23;89(11):1022-9 - PubMed
  14. J Clin Invest. 2002 Feb;109(4):509-16 - PubMed
  15. Circ Res. 1997 Dec;81(6):1072-82 - PubMed
  16. Nat Biotechnol. 2005 Jul;23(7):845-56 - PubMed
  17. Stem Cells Dev. 2013 Oct 1;22(19):2678-90 - PubMed
  18. Basic Res Cardiol. 2008 Sep;103(5):472-84 - PubMed
  19. J Membr Biol. 1998 Apr 1;162(3):217-23 - PubMed
  20. Circ Res. 2012 Aug 3;111(4):446-54 - PubMed
  21. Lancet. 2006 May 27;367(9524):1747-57 - PubMed
  22. PLoS One. 2011;6(11):e27417 - PubMed
  23. Pediatr Res. 2005 Aug;58(2):185-92 - PubMed
  24. FASEB J. 2004 Jun;18(9):1046-8 - PubMed
  25. J Pharmacol Exp Ther. 1990 Nov;255(2):429-35 - PubMed
  26. Circ Arrhythm Electrophysiol. 2013 Feb;6(1):191-201 - PubMed
  27. N Engl J Med. 2003 May 15;348(20):2007-18 - PubMed
  28. Nature. 1991 Jul 18;352(6332):244-7 - PubMed
  29. Anesthesiology. 2008 Apr;108(4):612-20 - PubMed
  30. J Mol Cell Cardiol. 2002 Feb;34(2):107-16 - PubMed
  31. Endocr Rev. 2005 Aug;26(5):704-28 - PubMed
  32. FASEB J. 2014 Feb;28(2):644-54 - PubMed
  33. Circulation. 1998 Jun 23;97(24):2463-9 - PubMed
  34. Basic Res Cardiol. 2011 Mar;106(2):163-74 - PubMed
  35. Stem Cells Dev. 2014 Jul 15;23(14):1704-16 - PubMed
  36. Tissue Eng Part A. 2012 May;18(9-10):910-9 - PubMed
  37. J Cardiovasc Pharmacol. 2004 Dec;44(6):639-44 - PubMed
  38. Circulation. 2003 Mar 4;107(8):1183-8 - PubMed
  39. Stem Cells. 2008 Dec;26(12):3130-8 - PubMed
  40. Circ Res. 2003 Jul 11;93(1):32-9 - PubMed
  41. Biochem Biophys Res Commun. 2003 Aug 29;308(3):439-44 - PubMed
  42. Mol Pharm. 2011 Oct 3;8(5):1495-504 - PubMed
  43. Mol Pharmacol. 1999 Jun;55(6):1000-5 - PubMed
  44. J Am Coll Cardiol. 2012 Jan 24;59(4):390-6 - PubMed
  45. J Biol Chem. 2003 Aug 15;278(33):31444-55 - PubMed

Publication Types