Display options
Share it on

Front Endocrinol (Lausanne). 2016 Sep 21;7:133. doi: 10.3389/fendo.2016.00133. eCollection 2016.

The Underexploited Role of Non-Coding RNAs in Lysosomal Storage Diseases.

Frontiers in endocrinology

Matheus Trovão Queiroz, Vanessa Gonçalves Pereira, Cinthia Castro do Nascimento, Vânia D'Almeida

Affiliations

  1. Laboratório de Erros Inatos do Metabolismo, Department of Psychobiology, Universidade Federal de São Paulo , São Paulo , Brazil.
  2. Laboratório de Erros Inatos do Metabolismo, Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil.

PMID: 27708618 PMCID: PMC5030823 DOI: 10.3389/fendo.2016.00133

Abstract

Non-coding RNAs (ncRNAs) are a functional class of RNA involved in the regulation of several cellular processes which may modulate disease onset, progression, and prognosis. Lysosomal storage diseases (LSD) are a group of rare disorders caused by mutations of genes encoding specific hydrolases or non-enzymatic proteins, characterized by a wide spectrum of manifestations. The alteration of ncRNA levels is well established in several human diseases such as cancer and auto-immune disorders; however, there is a lack of information focused on the role of ncRNA in rare diseases. Recent reports related to changes in ncRNA expression and its consequences on LSD physiopathology show us the importance to keep advancing in this field. This article will summarize recent findings and provide key points for further studies on LSD and ncRNA association.

Keywords: lysosomal storage disease; lysosome; miRNA; non-coding RNA; siRNA

References

  1. Biochem Biophys Res Commun. 2010 Dec 17;403(3-4):316-21 - PubMed
  2. Science. 2002 Dec 20;298(5602):2296-7 - PubMed
  3. Arch Dis Child. 2010 May;95(5):361-4 - PubMed
  4. J Cell Physiol. 2010 May;223(2):335-42 - PubMed
  5. Nat Rev Neurol. 2013 Oct;9(10):583-98 - PubMed
  6. Adv Exp Med Biol. 2016;886:13-32 - PubMed
  7. EMBO J. 2012 Mar 7;31(5):1095-108 - PubMed
  8. J Cell Biol. 2012 Nov 26;199(5):723-34 - PubMed
  9. Biomed Res Int. 2015;2015:730535 - PubMed
  10. J Biol Chem. 2010 Jul 2;285(27):20423-7 - PubMed
  11. J Cell Physiol. 2016 Mar;231(3):698-707 - PubMed
  12. Nature. 2005 Feb 17;433(7027):769-73 - PubMed
  13. Nat Rev Mol Cell Biol. 2013 May;14(5):283-96 - PubMed
  14. Physiol Rev. 2010 Jul;90(3):905-81 - PubMed
  15. Wiley Interdiscip Rev RNA. 2012 Jul-Aug;3(4):567-79 - PubMed
  16. Pediatr Endocrinol Rev. 2014 Sep;12 Suppl 1:72-81 - PubMed
  17. Annu Rev Anal Chem (Palo Alto Calif). 2015 ;8:217-37 - PubMed
  18. Hum Mol Genet. 2011 Oct 1;20(19):3852-66 - PubMed
  19. J Clin Endocrinol Metab. 2013 Jan;98(1):281-9 - PubMed
  20. Assay Drug Dev Technol. 2010 Jun;8(3):295-320 - PubMed
  21. Nature. 2008 Sep 4;455(7209):58-63 - PubMed
  22. Biol Cell. 2010 Dec;102(12):645-55 - PubMed
  23. Nucleic Acids Res. 2011 Sep 1;39(16):6845-53 - PubMed
  24. Nat Commun. 2014 Dec 19;5:5840 - PubMed
  25. Genomics. 2012 Feb;99(2):76-80 - PubMed
  26. Neurobiol Aging. 2005 Mar;26(3):373-82 - PubMed
  27. Sci China Life Sci. 2013 Oct;56(10):876-85 - PubMed
  28. Cell. 2014 Mar 27;157(1):77-94 - PubMed
  29. Natl Sci Rev. 2014 Jun 1;1(2):190-204 - PubMed
  30. RNA Biol. 2014;11(10):1291-300 - PubMed
  31. Mol Neurodegener. 2010 Apr 13;5:14 - PubMed
  32. PLoS One. 2015 May 20;10(5):e0126423 - PubMed
  33. Annu Rev Med. 2015;66:471-86 - PubMed
  34. Mol Genet Metab. 2014 Feb;111(2):152-62 - PubMed
  35. Science. 2009 Jul 24;325(5939):473-7 - PubMed
  36. Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10513-8 - PubMed
  37. Cell Res. 2015 Feb;25(2):193-207 - PubMed

Publication Types