Display options
Share it on

J Neuroinflammation. 2016 Sep 27;13(1):254. doi: 10.1186/s12974-016-0729-x.

PARP inhibition in leukocytes diminishes inflammation via effects on integrins/cytoskeleton and protects the blood-brain barrier.

Journal of neuroinflammation

Slava Rom, Viviana Zuluaga-Ramirez, Nancy L Reichenbach, Holly Dykstra, Sachin Gajghate, Pal Pacher, Yuri Persidsky

Affiliations

  1. Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, 19140, USA. [email protected].
  2. Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA. [email protected].
  3. Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, 19140, USA.
  4. Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, 20852, USA.
  5. Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, 19140, USA. [email protected].
  6. Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA. [email protected].

PMID: 27677851 PMCID: PMC5039899 DOI: 10.1186/s12974-016-0729-x

Abstract

BACKGROUND: Blood-brain barrier (BBB) dysfunction/disruption followed by leukocyte infiltration into the brain causes neuroinflammation and contributes to morbidity in multiple sclerosis, encephalitis, traumatic brain injury, and stroke. The identification of pathways that decreases the inflammatory potential of leukocytes would prevent such injury. Poly(ADP-ribose) polymerase 1 (PARP) controls various genes via its interaction with myriad transcription factors. Selective PARP inhibitors have appeared lately as potent anti-inflammatory tools. Their effects are outside the recognized PARP functions in DNA repair and transcriptional regulation. In this study, we explored the idea that selective inhibition of PARP in leukocytes would diminish their engagement of the brain endothelium.

METHODS: Cerebral vascular changes and leukocyte-endothelium interactions were surveyed by intravital videomicroscopy utilizing a novel in vivo model of localized aseptic meningitis when TNFα was introduced intracerebrally in wild-type (PARP

RESULTS: PARP suppression in monocytes diminished their adhesion to and migration across BBB in vitro models and prevented barrier injury. In monocytes, PARP inactivation decreased conformational activation of integrins that plays a key role in their tissue infiltration. Such changes were mediated by suppression of activation of small Rho GTPases and cytoskeletal rearrangements in monocytes. In vitro observations were confirmed in vivo showing diminished leukocyte-endothelial interaction after selective PARP suppression in leukocytes accompanied by BBB protection. PARP knockout animals demonstrated a substantial diminution of inflammatory responses in brain microvasculature and a decrease in BBB permeability.

CONCLUSIONS: These results suggest PARP inhibition in leukocytes as a novel approach to BBB protection in the setting of endothelial dysfunction caused by inflammation-induced leukocyte engagement.

Keywords: Actin cytoskeleton; LFA-1; Leukocyte-endothelial interaction; PARP-1; VLA-4

References

  1. Circ Res. 2006 Mar 31;98(6):757-67 - PubMed
  2. Biochem J. 2000 Mar 15;346 Pt 3:641-9 - PubMed
  3. Methods Mol Biol. 2011;780:463-89 - PubMed
  4. J Leukoc Biol. 2003 Jan;73(1):30-48 - PubMed
  5. Front Immunol. 2012 Aug 02;3:242 - PubMed
  6. J Exp Med. 1997 Aug 18;186(4):517-27 - PubMed
  7. J Cell Biol. 2005 Dec 19;171(6):1073-84 - PubMed
  8. J Biol Chem. 2009 May 22;284(21):14337-46 - PubMed
  9. Stroke. 2006 Feb;37(2):291-3 - PubMed
  10. Trends Endocrinol Metab. 2015 Feb;26(2):75-83 - PubMed
  11. Oncotarget. 2015 Feb 28;6(6):3825-39 - PubMed
  12. Arterioscler Thromb Vasc Biol. 2008 Apr;28(4):711-7 - PubMed
  13. Curr Neuropharmacol. 2009 Mar;7(1):65-74 - PubMed
  14. Biochim Biophys Acta. 2016 Mar;1862(3):472-82 - PubMed
  15. Nat Rev Neurol. 2015 Sep;11(9):524-35 - PubMed
  16. J Immunol. 2008 Feb 1;180(3):1854-65 - PubMed
  17. Hepatology. 2014 May;59(5):1998-2009 - PubMed
  18. Expert Opin Ther Targets. 2015;19(9):1149-52 - PubMed
  19. Microcirculation. 2000 Jun;7(3):201-14 - PubMed
  20. J Neurosci Res. 2005 Jul 15;81(2):190-8 - PubMed
  21. Am J Pathol. 2015 Jun;185(6):1548-51 - PubMed
  22. Am J Pathol. 2013 Nov;183(5):1548-58 - PubMed
  23. Mol Immunol. 2015 Feb;63(2):394-405 - PubMed
  24. Biochem Pharmacol. 2003 Apr 15;65(8):1373-82 - PubMed
  25. Atherosclerosis. 2005 Nov;183(1):1-16 - PubMed
  26. Brain Res. 2002 Apr 5;932(1-2):110-9 - PubMed
  27. Stroke. 2009 May;40(5):1849-57 - PubMed
  28. J Cereb Blood Flow Metab. 2014 Oct;34(10):1573-84 - PubMed
  29. Arch Neurol. 2002 Mar;59(3):391-7 - PubMed
  30. Curr Opin Pharmacol. 2008 Feb;8(1):96-103 - PubMed
  31. Mech Ageing Dev. 2015 Mar;146-148:53-64 - PubMed
  32. Physiol Rev. 2007 Jan;87(1):315-424 - PubMed
  33. Nat Immunol. 2009 Feb;10(2):185-94 - PubMed
  34. Cell Signal. 2013 Feb;25(2):457-69 - PubMed
  35. J Leukoc Biol. 2001 Aug;70(2):329-34 - PubMed
  36. J Biol Chem. 2004 Apr 16;279(16):16194-205 - PubMed
  37. Am J Physiol Heart Circ Physiol. 2004 Aug;287(2):H659-66 - PubMed
  38. J Cereb Blood Flow Metab. 2015 Jan;35(1):28-36 - PubMed
  39. Nat Rev Immunol. 2011 Jun;11(6):416-26 - PubMed
  40. Am J Physiol Cell Physiol. 2003 Aug;285(2):C250-2 - PubMed
  41. Fluids Barriers CNS. 2015 Oct 27;12:24 - PubMed
  42. Front Microbiol. 2015 Aug 25;6:878 - PubMed
  43. J Cereb Blood Flow Metab. 2002 Jan;22(1):39-49 - PubMed
  44. Acta Crystallogr D Biol Crystallogr. 2014 Oct;70(Pt 10):2740-53 - PubMed
  45. Nat Rev Cancer. 2010 Apr;10 (4):293-301 - PubMed
  46. J Cereb Blood Flow Metab. 2007 Jul;27(7):1318-26 - PubMed
  47. Fluids Barriers CNS. 2012 Nov 09;9(1):23 - PubMed
  48. J Immunol. 2014 Jan 1;192(1):324-37 - PubMed
  49. FEBS Lett. 2011 Dec 1;585(23):3770-80 - PubMed
  50. Nat Rev Drug Discov. 2005 May;4(5):421-40 - PubMed
  51. Free Radic Biol Med. 2014 Oct;75 Suppl 1:S19 - PubMed
  52. J Cereb Blood Flow Metab. 2015 Dec;35(12 ):1957-65 - PubMed
  53. Am J Pathol. 2011 Mar;178(3):946-55 - PubMed
  54. Immunity. 2004 Apr;20(4):393-406 - PubMed
  55. J Neuroimmune Pharmacol. 2006 Sep;1(3):223-36 - PubMed
  56. Oxid Med Cell Longev. 2015;2015:725370 - PubMed
  57. PLoS One. 2014 May 13;9(5):e97378 - PubMed
  58. J Leukoc Biol. 2010 May;87(5):779-89 - PubMed
  59. Arterioscler Thromb Vasc Biol. 2004 May;24(5):824-33 - PubMed
  60. Mult Scler. 2011 Jul;17 (7):794-807 - PubMed
  61. Nat Immunol. 2009 Sep;10 (9):958-64 - PubMed
  62. Nat Protoc. 2010 Jul;5(7):1265-72 - PubMed
  63. Cytokine. 2014 Aug;68(2):76-85 - PubMed
  64. J Immunol. 2000 Sep 15;165(6):3375-83 - PubMed
  65. Neuroscience. 2009 Feb 6;158(3):972-82 - PubMed
  66. J Neurosci. 2012 Mar 21;32(12 ):4004-16 - PubMed
  67. Blood. 2011 Mar 24;117(12):3331-42 - PubMed
  68. Nat Biotechnol. 2012 Feb 19;30(3):283-8 - PubMed
  69. Am J Pathol. 2012 Oct;181(4):1414-25 - PubMed
  70. Br J Pharmacol. 2012 Apr;165(8):2462-78 - PubMed
  71. Acta Crystallogr F Struct Biol Commun. 2014 Sep;70(Pt 9):1143-9 - PubMed
  72. J Leukoc Biol. 2008 Jan;83(1):1-12 - PubMed
  73. Neuron. 2014 May 7;82(3):603-17 - PubMed
  74. J Neuroinflammation. 2012 Feb 15;9:31 - PubMed
  75. Hum Immunol. 2012 May;73(5):439-47 - PubMed
  76. Microcirculation. 2006 Sep;13(6):439-56 - PubMed
  77. J Neurotrauma. 2010 Jun;27(6):1069-79 - PubMed
  78. Brain Behav. 2014 Jul;4(4):552-65 - PubMed
  79. Pharmacol Rev. 2002 Sep;54(3):375-429 - PubMed
  80. Am J Respir Crit Care Med. 2001 Jan;163(1):210-7 - PubMed
  81. Nat Rev Immunol. 2004 Feb;4(2):110-22 - PubMed
  82. Curr Neurol Neurosci Rep. 2015 Apr;15(4):17 - PubMed
  83. Nat Protoc. 2014 Nov;9(11):2515-38 - PubMed
  84. J Neuroinflammation. 2015 Dec 04;12 :229 - PubMed
  85. Anticancer Res. 2009 Jan;29(1):119-23 - PubMed
  86. Arch Biochem Biophys. 1997 Mar 15;339(2):267-74 - PubMed

Publication Types

Grant support