Display options
Share it on

Nat Commun. 2016 Aug 10;7:12411. doi: 10.1038/ncomms12411.

Solvent-driven electron trapping and mass transport in reduced graphites to access perfect graphene.

Nature communications

Philipp Vecera, Johannes Holzwarth, Konstantin F Edelthalhammer, Udo Mundloch, Herwig Peterlik, Frank Hauke, Andreas Hirsch

Affiliations

  1. Department of Chemistry and Pharmacy and Joint Institute of Advanced Materials and Processes (ZMP), University of Erlangen-Nürnberg, Henkestrasse 42, Erlangen 91054, Germany.
  2. University of Vienna, Faculty of Physics, Boltzmanngasse 5, Wien 1090, Austria.

PMID: 27506380 PMCID: PMC4987516 DOI: 10.1038/ncomms12411

Abstract

Herein, we report on a significant discovery, namely, the quantitative discharging of reduced graphite forms, such as graphite intercalation compounds, graphenide dispersions and graphenides deposited on surfaces with the simple solvent benzonitrile. Because of its comparatively low reduction potential, benzonitrile is reduced during this process to the radical anion, which exhibits a red colour and serves as a reporter molecule for the quantitative determination of negative charges on the carbon sheets. Moreover, this discovery reveals a very fundamental physical-chemical phenomenon, namely a quantitative solvent reduction induced and electrostatically driven mass transport of K(+) ions from the graphite intercalation compounds into the liquid. The simple treatment of dispersed graphenides suspended on silica substrates with benzonitrile leads to the clean conversion to graphene. This unprecedented procedure represents a rather mild, scalable and inexpensive method for graphene production surpassing previous wet-chemical approaches.

References

  1. Acc Chem Res. 2013 Oct 15;46(10):2329-39 - PubMed
  2. Chem Commun (Camb). 2012 May 21;48(41):5025-7 - PubMed
  3. Angew Chem Int Ed Engl. 2014 Jul 21;53(30):7720-38 - PubMed
  4. Chemistry. 2014 Dec 8;20(50):16644-51 - PubMed
  5. Nat Chem. 2011 Apr;3(4):279-86 - PubMed
  6. J Am Chem Soc. 2013 Dec 11;135(49):18385-95 - PubMed
  7. Faraday Discuss. 2014;172:311-25 - PubMed
  8. Nat Nanotechnol. 2013 Apr;8(4):235-46 - PubMed
  9. Acc Chem Res. 2013 Jan 15;46(1):4-13 - PubMed
  10. Acc Chem Res. 2013 Jan 15;46(1):129-37 - PubMed
  11. J Am Chem Soc. 2016 Feb 10;138(5):1647-52 - PubMed
  12. Angew Chem Int Ed Engl. 2013 Jan 7;52(2):754-7 - PubMed
  13. ACS Nano. 2011 Mar 22;5(3):2231-9 - PubMed
  14. ACS Nano. 2013 Jun 25;7(6):5472-82 - PubMed
  15. Science. 2009 Jan 30;323(5914):610-3 - PubMed
  16. Nature. 2009 Mar 12;458(7235):190-3 - PubMed
  17. Phys Rev Lett. 2006 Nov 3;97(18):187401 - PubMed

Publication Types