Display options
Share it on

Front Plant Sci. 2016 Jul 26;7:1070. doi: 10.3389/fpls.2016.01070. eCollection 2016.

Natural Genetic Variation of Seed Micronutrients of Arabidopsis thaliana Grown in Zinc-Deficient and Zinc-Amended Soil.

Frontiers in plant science

Xiaochao Chen, Lixing Yuan, Uwe Ludewig

Affiliations

  1. Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart Germany.
  2. Key Laboratory of Plant-Soil Interaction, Ministry of Education, Center for Resources, Environment and Food Security, College Resources and Environmental Sciences, China Agricultural University, Beijing China.

PMID: 27507976 PMCID: PMC4960235 DOI: 10.3389/fpls.2016.01070

Abstract

The quality of edible seeds for human and animal nutrition is crucially dependent on high zinc (Zn) and iron (Fe) seed concentrations. The micronutrient bioavailability is strongly reduced by seed phytate that forms complexes with seed cations. Superior genotypes with increased seed Zn concentrations had been identified, but low micronutrient seed levels often prevail when the plants are grown in Zn-deficient soils, which are globally widespread and correlate with human Zn-deficiency. Here, seed Zn concentrations of Arabidopsis accessions grown in Zn-deficient and Zn-amended conditions were measured together with seed Fe and manganese (Mn), in a panel of 108 accessions. By applying genome-wide association, de novo candidate genes potentially involved in the seed micronutrient accumulation were identified. However, a candidate inositol 1,3,4-trisphosphate 5/6-kinase 3 gene (ITPK3), located close to a significant nucleotide polymorphism associated with relative Zn seed concentrations, was dispensable for seed micronutrients accumulation in Col-0. Loss of this gene in itpk3-1 did neither affect phytate seed levels, nor seed Zn, Fe, and Mn. It is concluded that large natural variance of micronutrient seed levels is identified in the population and several accessions maintain high seed Zn despite growth in Zn-deficient conditions.

Keywords: genome-wide association; micronutrient; natural variation; seed; zinc deficiency

References

  1. Nature. 2010 Jun 3;465(7298):627-31 - PubMed
  2. Plant Cell. 2012 Feb;24(2):724-37 - PubMed
  3. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70 - PubMed
  4. PLoS One. 2012;7(4):e35121 - PubMed
  5. Plant Physiol. 2015 Apr;167(4):1412-29 - PubMed
  6. Nat Genet. 2012 Jun 17;44(7):825-30 - PubMed
  7. PLoS One. 2012;7(11):e50568 - PubMed
  8. PLoS Genet. 2010 Nov 11;6(11):e1001193 - PubMed
  9. Nature. 2014 Jun 5;510(7503):139-42 - PubMed
  10. Methods. 2001 Dec;25(4):402-8 - PubMed
  11. Phytochemistry. 2003 Nov;64(6):1033-43 - PubMed
  12. New Phytol. 2008;179(4):1033-47 - PubMed
  13. Nat Rev Genet. 2008 Apr;9(4):255-66 - PubMed
  14. Plant Cell Environ. 2009 Sep;32(9):1211-29 - PubMed
  15. Plant Cell Environ. 2013 Mar;36(3):697-705 - PubMed
  16. Plant Cell. 2013 Mar;25(3):1040-55 - PubMed
  17. Metallomics. 2009 Sep;1(5):418-26 - PubMed
  18. Front Plant Sci. 2014 Feb 12;5:30 - PubMed
  19. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:133-161 - PubMed
  20. Plant Physiol. 2014 Nov;166(3):1593-608 - PubMed
  21. Acta Biochim Biophys Sin (Shanghai). 2013 Jul;45(7):549-60 - PubMed
  22. PLoS One. 2010 Jun 14;5(6):e11081 - PubMed
  23. Elife. 2014 May 07;3:e02245 - PubMed
  24. Plant Cell. 2012 Dec;24(12):4793-805 - PubMed
  25. Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21199-204 - PubMed
  26. PLoS Genet. 2012 Sep;8(9):e1002923 - PubMed
  27. Curr Opin Plant Biol. 2015 Feb;23:98-108 - PubMed
  28. PLoS Genet. 2012;8(3):e1002589 - PubMed
  29. PLoS One. 2015 Mar 17;10(3):e0120604 - PubMed
  30. Genetics. 2010 Nov;186(3):1045-52 - PubMed
  31. J Exp Bot. 2009;60(5):1409-25 - PubMed
  32. Plant Physiol. 2015 Sep;169(1):647-59 - PubMed
  33. Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10296-301 - PubMed
  34. Front Plant Sci. 2013 Jul 26;4:283 - PubMed
  35. Front Plant Sci. 2011 Nov 17;2:80 - PubMed
  36. PLoS Biol. 2014 Dec 02;12(12):e1002009 - PubMed

Publication Types