Display options
Share it on

Nat Microbiol. 2016 Sep 19;1:16172. doi: 10.1038/nmicrobiol.2016.172.

Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously.

Nature microbiology

Hongbaek Cho, Carl N Wivagg, Mrinal Kapoor, Zachary Barry, Patricia D A Rohs, Hyunsuk Suh, Jarrod A Marto, Ethan C Garner, Thomas G Bernhardt

Affiliations

  1. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
  2. Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
  3. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
  4. Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.

PMID: 27643381 PMCID: PMC5030067 DOI: 10.1038/nmicrobiol.2016.172

Abstract

Multi-protein complexes organized by cytoskeletal proteins are essential for cell wall biogenesis in most bacteria. Current models of the wall assembly mechanism assume that class A penicillin-binding proteins (aPBPs), the targets of penicillin-like drugs, function as the primary cell wall polymerases within these machineries. Here, we use an in vivo cell wall polymerase assay in Escherichia coli combined with measurements of the localization dynamics of synthesis proteins to investigate this hypothesis. We find that aPBP activity is not necessary for glycan polymerization by the cell elongation machinery, as is commonly believed. Instead, our results indicate that cell wall synthesis is mediated by two distinct polymerase systems, shape, elongation, division, sporulation (SEDS)-family proteins working within the cytoskeletal machines and aPBP enzymes functioning outside these complexes. These findings thus necessitate a fundamental change in our conception of the cell wall assembly process in bacteria.

References

  1. Mol Microbiol. 2011 Jan;79(1):109-18 - PubMed
  2. Nat Methods. 2008 Aug;5(8):695-702 - PubMed
  3. Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15822-7 - PubMed
  4. J Bacteriol. 2007 Aug;189(15):5692-704 - PubMed
  5. J Gen Microbiol. 1985 Oct;131(10):2839-45 - PubMed
  6. FEMS Microbiol Rev. 2008 Mar;32(2):234-58 - PubMed
  7. Anal Chem. 2009 May 1;81(9):3440-7 - PubMed
  8. J Bacteriol. 2003 Feb;185(4):1423-31 - PubMed
  9. Science. 2014 Jul 11;345(6193):220-2 - PubMed
  10. J Bacteriol. 1999 Oct;181(20):6552-5 - PubMed
  11. Nature. 2016 Sep 29;537(7622):634-638 - PubMed
  12. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5978-83 - PubMed
  13. J Bacteriol. 2009 Jun;191(11):3649-56 - PubMed
  14. Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):E1025-34 - PubMed
  15. Science. 2011 Jul 8;333(6039):225-8 - PubMed
  16. Nucleic Acids Res. 2005 Feb 24;33(4):e36 - PubMed
  17. Cell. 2001 Mar 23;104(6):913-22 - PubMed
  18. Mol Syst Biol. 2006;2:2006.0008 - PubMed
  19. Nat Methods. 2012 Jul;9(7):671-5 - PubMed
  20. Nature. 1991 Nov 14;354(6349):161-4 - PubMed
  21. Microbiology. 2011 Jan;157(Pt 1):251-9 - PubMed
  22. Antimicrob Agents Chemother. 1979 Nov;16(5):533-9 - PubMed
  23. Biophys J. 1997 Aug;73(2):1073-80 - PubMed
  24. J Bacteriol. 2008 Jun;190(11):3914-22 - PubMed
  25. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  26. Nature. 2013 Jul 25;499(7459):394-6 - PubMed
  27. Nat Rev Microbiol. 2011 Dec 28;10(2):123-36 - PubMed
  28. Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8824-9 - PubMed
  29. Cell. 2014 Dec 4;159(6):1300-11 - PubMed
  30. Nat Methods. 2009 May;6(5):343-5 - PubMed
  31. Nat Methods. 2009 Apr;6(4):240-1 - PubMed
  32. Science. 2011 Jul 8;333(6039):222-5 - PubMed
  33. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 - PubMed
  34. Biophys J. 2002 Nov;83(5):2681-92 - PubMed
  35. J Mol Biol. 2010 Jun 18;399(4):547-61 - PubMed
  36. J Bacteriol. 1999 Jun;181(12):3852-6 - PubMed
  37. Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3773-8 - PubMed
  38. Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4554-9 - PubMed

Publication Types

Grant support