Display options
Share it on

Nature. 2016 Oct 27;538(7626):495-498. doi: 10.1038/nature19345. Epub 2016 Sep 28.

Atom-at-a-time laser resonance ionization spectroscopy of nobelium.

Nature

Mustapha Laatiaoui, Werner Lauth, Hartmut Backe, Michael Block, Dieter Ackermann, Bradley Cheal, Premaditya Chhetri, Christoph Emanuel Düllmann, Piet van Duppen, Julia Even, Rafael Ferrer, Francesca Giacoppo, Stefan Götz, Fritz Peter Heßberger, Mark Huyse, Oliver Kaleja, Jadambaa Khuyagbaatar, Peter Kunz, Felix Lautenschläger, Andrew Kishor Mistry, Sebastian Raeder, Enrique Minaya Ramirez, Thomas Walther, Calvin Wraith, Alexander Yakushev

Affiliations

  1. Helmholtz-Institut Mainz, Staudingerweg 18, D-55128 Mainz, Germany.
  2. GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt, Germany.
  3. Institut für Kernphysik, Johannes Gutenberg-Universität, Johann-Joachim-Becher Weg 45, D-55128 Mainz, Germany.
  4. Institut für Kernchemie, Johannes Gutenberg-Universität, Fritz-Strassmann Weg 2, D-55128 Mainz, Germany.
  5. Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE, UK.
  6. Institut für Angewandte Physik, Technische Universität Darmstadt, Schlossgartenstrasse 7, D-64289 Darmstadt, Germany.
  7. KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven, Belgium.
  8. Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, D-64289 Darmstadt, Germany.
  9. TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada.

PMID: 27680707 DOI: 10.1038/nature19345

Abstract

Optical spectroscopy of a primordial isotope has traditionally formed the basis for understanding the atomic structure of an element. Such studies have been conducted for most elements and theoretical modelling can be performed to high precision, taking into account relativistic effects that scale approximately as the square of the atomic number. However, for the transfermium elements (those with atomic numbers greater than 100), the atomic structure is experimentally unknown. These radioactive elements are produced in nuclear fusion reactions at rates of only a few atoms per second at most and must be studied immediately following their production, which has so far precluded their optical spectroscopy. Here we report laser resonance ionization spectroscopy of nobelium (No; atomic number 102) in single-atom-at-a-time quantities, in which we identify the ground-state transition

Publication Types