Display options
Share it on

Sci Rep. 2016 Sep 29;6:33980. doi: 10.1038/srep33980.

Cell biology is different in small volumes: endogenous signals shape phenotype of primary hepatocytes cultured in microfluidic channels.

Scientific reports

Amranul Haque, Pantea Gheibi, Yandong Gao, Elena Foster, Kyung Jin Son, Jungmok You, Gulnaz Stybayeva, Dipali Patel, Alexander Revzin

Affiliations

  1. Department of Biomedical Engineering, University of California Davis, CA 95616, USA.
  2. Department of Plant and Environmental New Resources, Kyung Hee University, Youngin-si, Gyeonggi-do, South Korea.

PMID: 27681582 PMCID: PMC5041105 DOI: 10.1038/srep33980

Abstract

The approaches for maintaining hepatocytes in vitro are aimed at recapitulating aspects of the native liver microenvironment through the use of co-cultures, surface coatings and 3D spheroids. This study highlights the effects of spatial confinement-a less studied component of the in vivo microenvironment. We demonstrate that hepatocytes cultured in low-volume microfluidic channels (microchambers) retain differentiated hepatic phenotype for 21 days whereas cells cultured in regular culture plates under identical conditions de-differentiate after 7 days. Careful consideration of nutrient delivery and oxygen tension suggested that these factors could not solely account for enhanced cell function in microchambers. Through a series of experiments involving microfluidic chambers of various heights and inhibition of key molecular pathways, we confirmed that phenotype of hepatocytes in small volumes was shaped by endogenous signals, both hepato-inductive growth factors (GFs) such as hepatocyte growth factor (HGF) and hepato-disruptive GFs such as transforming growth factor (TGF)-β1. Hepatocytes are not generally thought of as significant producers of GFs-this role is typically assigned to nonparenchymal cells of the liver. Our study demonstrates that, in an appropriate microenvironment, hepatocytes produce hepato-inductive and pro-fibrogenic signals at the levels sufficient to shape their phenotype and function.

References

  1. Liver. 1999 Apr;19(2):151-9 - PubMed
  2. Gene Ther. 2000 Feb;7(3):205-14 - PubMed
  3. FASEB J. 1989 Feb;3(2):174-7 - PubMed
  4. Cells Tissues Organs. 2005;181(2):67-79 - PubMed
  5. Biomaterials. 2011 Mar;32(8):2032-42 - PubMed
  6. Mol Pharmacol. 2002 Jul;62(1):65-74 - PubMed
  7. Biomaterials. 2012 Feb;33(5):1414-27 - PubMed
  8. Cell Res. 2009 Feb;19(2):156-72 - PubMed
  9. Biomaterials. 2010 May;31(13):3596-603 - PubMed
  10. J Biomed Mater Res A. 2005 Oct 1;75(1):242-8 - PubMed
  11. Nature. 2014 Mar 13;507(7491):181-9 - PubMed
  12. Hepatology. 2008 Jul;48(1):276-88 - PubMed
  13. Am J Physiol Cell Physiol. 2011 Mar;300(3):C416-24 - PubMed
  14. Lab Chip. 2014 Jun 21;14(12):2033-9 - PubMed
  15. Cell Biol Toxicol. 1997 Jul;13(4-5):235-42 - PubMed
  16. Organogenesis. 2014 Apr-Jun;10(2):250-9 - PubMed
  17. Tissue Eng Part A. 2013 Dec;19(23-24):2655-63 - PubMed
  18. Hepatology. 2001 Sep;34(3):447-55 - PubMed
  19. Biotechnol Bioeng. 2013 Jun;110(6):1663-73 - PubMed
  20. Biotechnol Bioeng. 2007 Aug 1;97(5):1340-6 - PubMed
  21. Hepatology. 1996 Sep;24(3):636-42 - PubMed
  22. Ann Surg Treat Res. 2014 Aug;87(2):53-60 - PubMed
  23. Biotechnol Prog. 1991 May-Jun;7(3):237-45 - PubMed
  24. Hepatology. 1984 May-Jun;4(3):373-80 - PubMed
  25. Nat Rev Mol Cell Biol. 2014 Mar;15(3):178-96 - PubMed
  26. Ann Surg. 1994 Jul;220(1):59-67 - PubMed
  27. Lab Chip. 2005 Oct;5(10):1089-95 - PubMed
  28. Science. 1997 Apr 4;276(5309):60-6 - PubMed
  29. Biotechnol Bioeng. 2008 Apr 15;99(6):1472-81 - PubMed
  30. Biomaterials. 1996 Feb;17(3):373-85 - PubMed
  31. Biotechnol Bioeng. 2003 May 5;82(3):253-62 - PubMed
  32. Biomaterials. 2009 Aug;30(22):3733-41 - PubMed
  33. Nat Methods. 2005 Feb;2(2):119-25 - PubMed
  34. J Gastroenterol Hepatol. 2008 Mar;23 Suppl 1:S122-7 - PubMed
  35. J Clin Invest. 1995 Jul;96(1):447-55 - PubMed
  36. Biomed Microdevices. 2011 Jun;13(3):539-48 - PubMed
  37. Nature. 1970 Jan 31;225(5231):420-2 - PubMed
  38. FASEB J. 1996 Nov;10(13):1471-84 - PubMed
  39. Ann N Y Acad Sci. 1980;349:85-98 - PubMed
  40. Biotechnol Bioeng. 2007 May 1;97(1):188-99 - PubMed
  41. Hepatology. 1996 Nov;24(5):1274-81 - PubMed
  42. J Biomed Mater Res. 1997 Feb;34(2):189-99 - PubMed
  43. J Vis Exp. 2013 Jul 15;(77):e50678 - PubMed
  44. ACS Appl Mater Interfaces. 2015 Jun 17;7(23):12299-308 - PubMed
  45. Annu Rev Anal Chem (Palo Alto Calif). 2012;5:293-315 - PubMed
  46. Integr Biol (Camb). 2014 Jan;6(1):44-52 - PubMed
  47. Tissue Eng Part A. 2011 Apr;17(7-8):1055-68 - PubMed
  48. FASEB J. 2006 Apr;20(6):773-5 - PubMed
  49. Biotechnol Bioeng. 2005 Jun 5;90(5):632-44 - PubMed
  50. J Biochem. 2011 Mar;149(3):231-9 - PubMed
  51. Hepatology. 2011 Jun;53(6):2063-74 - PubMed
  52. Hepatology. 2002 Aug;36(2):336-44 - PubMed
  53. Anal Chem. 2006 Jul 1;78(13):4291-8 - PubMed
  54. Lab Chip. 2005 Jan;5(1):44-8 - PubMed
  55. Biomaterials. 2005 Jun;26(17):3607-15 - PubMed
  56. Stem Cells. 2016 Jun;34(6):1501-12 - PubMed
  57. J Cell Biol. 1973 Dec;59(3):722-34 - PubMed
  58. Nat Biotechnol. 2008 Jan;26(1):120-6 - PubMed
  59. Science. 2006 Oct 13;314(5797):298-300 - PubMed
  60. PLoS One. 2011;6(8):e22892 - PubMed
  61. Lab Chip. 2015 Dec 21;15(24):4614-24 - PubMed
  62. Exp Mol Med. 2001 Dec 31;33(4):179-90 - PubMed
  63. Expert Opin Investig Drugs. 1999 May;8(5):585-607 - PubMed
  64. Biotechnol Bioeng. 1997 Dec 20;56(6):706-11 - PubMed
  65. Annu Rev Cell Dev Biol. 2011;27:377-407 - PubMed
  66. Integr Biol (Camb). 2009 Feb;1(2):182-95 - PubMed

Publication Types

Grant support