Display options
Share it on

PLoS One. 2016 Sep 28;11(9):e0163485. doi: 10.1371/journal.pone.0163485. eCollection 2016.

Transcriptome Analysis of the Response to NaCl in Suaeda maritima Provides an Insight into Salt Tolerance Mechanisms in Halophytes.

PloS one

Sachin Ashruba Gharat, Shaifaly Parmar, Subodh Tambat, Madavan Vasudevan, Birendra Prasad Shaw

Affiliations

  1. Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India.
  2. Bionivid Technology Private Limited, 3rd Floor, 4C-209, 4th Cross, Near New Horizon College, Kasturi Nagar, Bangalore, 560043, Karnataka, India.

PMID: 27682829 PMCID: PMC5040429 DOI: 10.1371/journal.pone.0163485

Abstract

Although salt tolerance is a feature representative of halophytes, most studies on this topic in plants have been conducted on glycophytes. Transcriptome profiles are also available for only a limited number of halophytes. Hence, the present study was conducted to understand the molecular basis of salt tolerance through the transcriptome profiling of the halophyte Suaeda maritima, which is an emerging plant model for research on salt tolerance. Illumina sequencing revealed 72,588 clustered transcripts, including 27,434 that were annotated using BLASTX. Salt application resulted in the 2-fold or greater upregulation of 647 genes and downregulation of 735 genes. Of these, 391 proteins were homologous to proteins in the COGs (cluster of orthologous groups) database, and the majorities were grouped into the poorly characterized category. Approximately 50% of the genes assigned to MapMan pathways showed homology to S. maritima. The majority of such genes represented transcription factors. Several genes also contributed to cell wall and carbohydrate metabolism, ion relation, redox responses and G protein, phosphoinositide and hormone signaling. Real-time PCR was used to validate the results of the deep sequencing for the most of the genes. This study demonstrates the expression of protein kinase C, the target of diacylglycerol in phosphoinositide signaling, for the first time in plants. This study further reveals that the biochemical and molecular responses occurring at several levels are associated with salt tolerance in S. maritima. At the structural level, adaptations to high salinity levels include the remodeling of cell walls and the modification of membrane lipids. At the cellular level, the accumulation of glycinebetaine and the sequestration and exclusion of Na+ appear to be important. Moreover, this study also shows that the processes related to salt tolerance might be highly complex, as reflected by the salt-induced enhancement of transcription factor expression, including hormone-responsive factors, and that this process might be initially triggered by G protein and phosphoinositide signaling.

Conflict of interest statement

Subodh Tambat and Madavan Vasudevan are employed by Bionivid Technology Private Limited. There are no patents, products in development or marketed products to declare. This does not alter our adherenc

References

  1. Annu Rev Plant Biol. 2008;59:651-81 - PubMed
  2. PLoS One. 2014 Sep 29;9(9):e108785 - PubMed
  3. Plant Cell Rep. 2011 Aug;30(8):1383-91 - PubMed
  4. DNA Res. 2014 Feb;21(1):69-84 - PubMed
  5. BMC Plant Biol. 2015 Oct 24;15:254 - PubMed
  6. Trends Plant Sci. 2012 Jun;17(6):369-81 - PubMed
  7. New Phytol. 2005 Sep;167(3):645-63 - PubMed
  8. BMC Plant Biol. 2009 Jun 05;9:69 - PubMed
  9. BMC Genomics. 2013 Mar 05;14:146 - PubMed
  10. Genom Data. 2015 Jul 15;5:352-9 - PubMed
  11. Nat Methods. 2012 Mar 04;9(4):357-9 - PubMed
  12. BMC Genomics. 2007 May 22;8:125 - PubMed
  13. BMC Plant Biol. 2015 Dec 29;15:301 - PubMed
  14. PLoS One. 2014 Mar 20;9(3):e92598 - PubMed
  15. Methods. 2001 Dec;25(4):402-8 - PubMed
  16. PLoS One. 2014 Mar 25;9(3):e92913 - PubMed
  17. Plant Mol Biol. 1999 Aug;40(6):1073-83 - PubMed
  18. Genome Biol. 2010;11(10):R106 - PubMed
  19. Plant Physiol. 2005 Oct;139(2):822-35 - PubMed
  20. Gene. 2009 May 1;436(1-2):45-55 - PubMed
  21. Plant Physiol. 2011 Jan;155(1):399-413 - PubMed
  22. PLoS One. 2015 May 13;10(5):e0126783 - PubMed
  23. Int Rev Cytol. 1996;165:1-52 - PubMed
  24. BMC Genomics. 2012 Oct 10;13:544 - PubMed
  25. ScientificWorldJournal. 2014 Jan 19;2014:764089 - PubMed
  26. Annu Rev Plant Biol. 2002;53:247-73 - PubMed
  27. PLoS One. 2014 Dec 12;9(12):e115128 - PubMed
  28. Plant Physiol. 2007 Oct;145(2):559-71 - PubMed
  29. Plant Physiol. 2006 Apr;140(4):1437-50 - PubMed
  30. Plant Sci. 2001 Feb 5;160(3):415-423 - PubMed
  31. Plant Cell. 2005 Dec;17(12):3257-81 - PubMed
  32. Plant Cell. 1997 Dec;9(12):2243-59 - PubMed
  33. Trends Plant Sci. 2005 Aug;10(8):368-75 - PubMed
  34. PLoS One. 2015 Mar 11;10(3):e0118406 - PubMed
  35. Plant Cell Physiol. 2003 Nov;44(11):1185-91 - PubMed
  36. Planta. 2011 Jun;233(6):1237-52 - PubMed
  37. BMC Genomics. 2015 May 06;16:353 - PubMed
  38. PLoS One. 2012;7(1):e30355 - PubMed
  39. Biomed Res Int. 2014;2014:467395 - PubMed
  40. Plant Physiol. 2004 Sep;136(1):2806-17 - PubMed
  41. Plant Mol Biol. 2014 Oct;86(3):303-17 - PubMed
  42. J Exp Bot. 2006;57(12):2909-22 - PubMed
  43. PLoS One. 2015 Feb 23;10(2):e0118339 - PubMed
  44. J Exp Bot. 2012 Feb;63(3):1511-22 - PubMed
  45. Plant Cell Rep. 2013 Jan;32(1):61-75 - PubMed
  46. Phytochemistry. 2009 Mar;70(4):492-500 - PubMed
  47. Plant Physiol. 2004 Jan;134(1):118-28 - PubMed
  48. J Lipid Res. 2009 Apr;50 Suppl:S260-5 - PubMed
  49. Front Plant Sci. 2014 Aug 05;5:358 - PubMed
  50. Front Plant Sci. 2014 Apr 16;5:135 - PubMed
  51. PLoS One. 2014 Nov 25;9(11):e112245 - PubMed
  52. AoB Plants. 2015 Mar 10;7:null - PubMed
  53. Plant Physiol. 2001 Apr;125(4):1842-53 - PubMed
  54. Plant Physiol Biochem. 2013 Feb;63:262-71 - PubMed
  55. J Plant Physiol. 2013 Jan 15;170(2):220-4 - PubMed
  56. PLoS One. 2013 Jun 25;8(6):e65877 - PubMed
  57. BMC Genomics. 2015 Mar 11;16:169 - PubMed
  58. J Exp Bot. 2012 Jul;63(12):4549-61 - PubMed
  59. Plant Cell Physiol. 2009 Jan;50(1):78-89 - PubMed
  60. Plant Cell. 2004 Sep;16(9):2481-98 - PubMed
  61. Genome. 2007 Nov;50(11):1001-13 - PubMed
  62. Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2226-31 - PubMed
  63. Plant Signal Behav. 2012 Jul;7(7):733-40 - PubMed
  64. Biochem Biophys Res Commun. 2004 Oct 15;323(2):534-40 - PubMed
  65. Plant J. 2009 Dec;60(5):795-804 - PubMed
  66. Plant J. 2007 Aug;51(4):656-69 - PubMed
  67. Front Plant Sci. 2015 Jan 07;5:771 - PubMed
  68. Plant Physiol. 2001 Jan;125(1):406-22 - PubMed
  69. Plant Mol Biol. 2004 Jul;55(5):663-77 - PubMed
  70. Plant Physiol. 2006 Mar;140(3):1095-108 - PubMed
  71. Plant Cell. 2002 Feb;14(2):465-77 - PubMed
  72. Arch Biochem Biophys. 2006 Aug 1;452(1):55-68 - PubMed
  73. Gene. 2013 Aug 1;525(1):26-34 - PubMed
  74. Plant Cell Physiol. 2010 Jun;51(6):997-1006 - PubMed
  75. Mol Plant. 2014 Apr;7(4):722-38 - PubMed
  76. J Exp Bot. 2014 Dec;65(22):6553-61 - PubMed
  77. Front Plant Sci. 2015 Nov 18;6:1000 - PubMed
  78. Biochim Biophys Acta. 2012 Feb;1819(2):104-19 - PubMed
  79. J Proteomics. 2014 Mar 17;99:84-100 - PubMed
  80. Plant J. 2007 Aug;51(4):617-30 - PubMed
  81. J Plant Physiol. 2003 Oct;160(10):1165-74 - PubMed
  82. Plant Cell Environ. 2014 Sep;37(9):2002-13 - PubMed
  83. Plant J. 2001 Jun;26(6):595-605 - PubMed
  84. New Phytol. 2015 Jan;205(1):316-28 - PubMed
  85. Front Plant Sci. 2015 Apr 21;6:241 - PubMed
  86. PLoS One. 2015 Apr 22;10(4):e0124421 - PubMed

Publication Types