Display options
Share it on

Nat Commun. 2016 Aug 22;7:12492. doi: 10.1038/ncomms12492.

Magnetic torque anomaly in the quantum limit of Weyl semimetals.

Nature communications

Philip J W Moll, Andrew C Potter, Nityan L Nair, B J Ramshaw, K A Modic, Scott Riggs, Bin Zeng, Nirmal J Ghimire, Eric D Bauer, Robert Kealhofer, Filip Ronning, James G Analytis

Affiliations

  1. Department of Physics, University of California Berkeley, 359 Birge Hall, Berkeley, California 94720, USA.
  2. Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, Dresden 01187, Germany.
  3. National High Magnetic Field Laboratory, TA-35, Los Alamos, New Mexico 87545, USA.
  4. National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310, USA.
  5. Los Alamos National Laboratory, TA-3, Los Alamos, New Mexico 87545, USA.

PMID: 27545105 PMCID: PMC4996949 DOI: 10.1038/ncomms12492

Abstract

Electrons in materials with linear dispersion behave as massless Weyl- or Dirac-quasiparticles, and continue to intrigue due to their close resemblance to elusive ultra-relativistic particles as well as their potential for future electronics. Yet the experimental signatures of Weyl-fermions are often subtle and indirect, in particular if they coexist with conventional, massive quasiparticles. Here we show a pronounced anomaly in the magnetic torque of the Weyl semimetal NbAs upon entering the quantum limit state in high magnetic fields. The torque changes sign in the quantum limit, signalling a reversal of the magnetic anisotropy that can be directly attributed to the topological nature of the Weyl electrons. Our results establish that anomalous quantum limit torque measurements provide a direct experimental method to identify and distinguish Weyl and Dirac systems.

References

  1. Science. 2014 Feb 21;343(6173):864-7 - PubMed
  2. Nat Mater. 2014 Jul;13(7):677-81 - PubMed
  3. Phys Rev Lett. 2014 Jul 11;113(2):027603 - PubMed
  4. J Phys Condens Matter. 2015 Apr 22;27(15):152201 - PubMed
  5. Science. 2009 Jun 19;324(5934):1530-4 - PubMed
  6. Nature. 2012 Oct 11;490(7419):192-200 - PubMed
  7. Phys Rev Lett. 1989 Jun 5;62(23):2747-2750 - PubMed
  8. Phys Rev Lett. 2004 Sep 3;93(10):106403 - PubMed
  9. Nat Commun. 2015 Jun 12;6:7373 - PubMed
  10. Nature. 2014 Oct 9;514(7521):205-8 - PubMed
  11. Nat Commun. 2016 May 17;7:11615 - PubMed
  12. Phys Rev Lett. 2002 Jul 8;89(2):026401 - PubMed

Publication Types