Display options
Share it on

Small. 2016 Nov;12(42):5845-5861. doi: 10.1002/smll.201601161. Epub 2016 Aug 22.

Defined Host-Guest Chemistry on Nanocarbon for Sustained Inhibition of Cancer.

Small (Weinheim an der Bergstrasse, Germany)

Fatemeh Ostadhossein, Santosh K Misra, Prabuddha Mukherjee, Alireza Ostadhossein, Enrique Daza, Saumya Tiwari, Shachi Mittal, Mark C Gryka, Rohit Bhargava, Dipanjan Pan

Affiliations

  1. Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA.
  2. Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, USA.
  3. Departments of Bioengineering, Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA.
  4. Carle Foundation Hospital, 502 N. Busey St., Urbana, IL, 61801, USA.
  5. Departments of Bioengineering and Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, Institute for Sustainability in Energy and Environment, 502 N. Busey St., Urbana, IL, 61801, USA.

PMID: 27545321 PMCID: PMC5542878 DOI: 10.1002/smll.201601161

Abstract

Signal transducer and activator of transcription factor 3 (STAT-3) is known to be overexpressed in cancer stem cells. Poor solubility and variable drug absorption are linked to low bioavailability and decreased efficacy. Many of the drugs regulating STAT-3 expression lack aqueous solubility; hence hindering efficient bioavailability. A theranostics nanoplatform based on luminescent carbon particles decorated with cucurbit[6]uril is introduced for enhancing the solubility of niclosamide, a STAT-3 inhibitor. The host-guest chemistry between cucurbit[6]uril and niclosamide makes the delivery of the hydrophobic drug feasible while carbon nanoparticles enhance cellular internalization. Extensive physicochemical characterizations confirm successful synthesis. Subsequently, the host-guest chemistry of niclosamide and cucurbit[6]uril is studied experimentally and computationally. In vitro assessments in human breast cancer cells indicate approximately twofold enhancement in IC

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Keywords: STAT-3; breast cancer; host-guest chemistry; nanoparticles; vibrational spectroscopic imaging

References

  1. Mol Cancer Ther. 2013 Oct;12(10):2200-12 - PubMed
  2. Nano Res. 2013;6(5):312-325 - PubMed
  3. J Am Chem Soc. 2012 Sep 19;134(37):15318-23 - PubMed
  4. Nat Rev Clin Oncol. 2011 Feb;8(2):97-106 - PubMed
  5. Neoplasia. 2006 Oct;8(10):788-95 - PubMed
  6. J Cell Biochem. 2009 Mar 1;106(4):682-92 - PubMed
  7. ACS Nano. 2015 Nov 24;9(11):10695-10718 - PubMed
  8. Neoplasia. 2005 Nov;7(11):967-76 - PubMed
  9. Acc Chem Res. 2013 Mar 19;46(3):702-13 - PubMed
  10. Toxicol Sci. 2008 Aug;104(2):283-93 - PubMed
  11. Clin Transl Med. 2013 Jan 17;2(1):3 - PubMed
  12. PLoS One. 2009 Sep 22;4(9):e7124 - PubMed
  13. Mol Cancer Ther. 2014 Mar;13(3):606-16 - PubMed
  14. Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):268-73 - PubMed
  15. Oncogene. 2000 May 15;19(21):2468-73 - PubMed
  16. Adv Mater. 2013 Dec 3;25(45):6569-74 - PubMed
  17. Sci Rep. 2016 Jun 21;6:28196 - PubMed
  18. Biopolymers. 2004 Nov;75(4):355-65 - PubMed
  19. Phys Chem Chem Phys. 2015 Feb 7;17(5):3383-93 - PubMed
  20. Chem Soc Rev. 2015 Jan 21;44(2):394-418 - PubMed
  21. Adv Mater. 2012 Apr 3;24(13):1716-21 - PubMed
  22. Int J Pharm. 2005 Nov 4;304(1-2):193-209 - PubMed
  23. Cancer Treat Rev. 2012 Oct;38(6):589-98 - PubMed
  24. J Am Chem Soc. 2009 Aug 19;131(32):11308-9 - PubMed
  25. Small. 2015 Sep;11(36):4691-703 - PubMed
  26. Langmuir. 2011 Jan 18;27(2):843-50 - PubMed
  27. ACS Nano. 2011 May 24;5(5):3878-87 - PubMed
  28. Transl Oncol. 2014 Apr;7(2):303-8 - PubMed
  29. Cancer Res. 2010 Mar 15;70(6):2516-27 - PubMed
  30. Theranostics. 2013 Aug 14;3(9):677-86 - PubMed
  31. Nat Rev Cancer. 2014 Nov;14(11):736-46 - PubMed
  32. Nat Nanotechnol. 2010 May;5(5):354-9 - PubMed
  33. Nat Rev Cancer. 2004 Feb;4(2):97-105 - PubMed
  34. Chem Soc Rev. 2015 Oct 7;44(19):6670-83 - PubMed
  35. Gastroenterology. 2012 Mar;142(3):521-530.e3 - PubMed
  36. Biomaterials. 2016 Jan;74:1-18 - PubMed
  37. Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16158-63 - PubMed
  38. PLoS One. 2012;7(2):e30820 - PubMed
  39. Nat Biotechnol. 2007 Oct;25(10):1165-70 - PubMed
  40. Org Biomol Chem. 2010 May 7;8(9):2037-42 - PubMed
  41. Trends Pharmacol Sci. 2013 Sep;34(9):508-17 - PubMed
  42. Nanoscale. 2015 Apr 28;7(16):7127-32 - PubMed
  43. Biol Reprod. 2011 Oct;85(4):721-32 - PubMed
  44. Arch Biochem Biophys. 1995 Jan 10;316(1):653-6 - PubMed
  45. Stem Cells. 2009 Oct;27(10):2383-92 - PubMed
  46. Chem Rev. 2015 Nov 25;115(22):12320-406 - PubMed
  47. Biochem Biophys Res Commun. 2011 Dec 16;416(3-4):246-51 - PubMed
  48. AAPS J. 2005 Sep 02;7(1):E241-8 - PubMed
  49. J Chem Theory Comput. 2014 Sep 9;10(9):4069-4078 - PubMed
  50. CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30 - PubMed
  51. Cancer Lett. 2008 Sep 28;269(1):57-66 - PubMed
  52. ACS Med Chem Lett. 2010 Sep 07;1(9):454-9 - PubMed
  53. ACS Nano. 2012 May 22;6(5):4530-9 - PubMed
  54. Acc Chem Res. 2003 Aug;36(8):621-30 - PubMed
  55. Materials (Basel). 2015 Sep 18;8(9):6401-6418 - PubMed
  56. Bioconjug Chem. 2016 Mar 16;27(3):594-603 - PubMed
  57. Mol Pharm. 2015 Feb 2;12(2):375-85 - PubMed
  58. Adv Mater. 2012 Sep 25;24(37):5104-10 - PubMed
  59. Chem Commun (Camb). 2016 Jun 14;52(47):7513-6 - PubMed
  60. Profiles Drug Subst Excip Relat Methodol. 2005;32:67-96 - PubMed

Publication Types

Grant support