Display options
Share it on

J Biogeogr. 2016 Jan;43(1):44-58. doi: 10.1111/jbi.12611. Epub 2015 Sep 24.

Diversification of clearwing butterflies with the rise of the Andes.

Journal of biogeography

Donna Lisa De-Silva, Marianne Elias, Keith Willmott, James Mallet, Julia J Day

Affiliations

  1. Institut de Systématique, Évolution, BiodiversitéI SYEB - UMR 7205 - CNRSMNHNUPMCEPHE Muséum National d'Histoire Naturelle Sorbonne Universités 57 rue Cuvier, CP50 Paris F-75005 France; Department of Genetics, Evolution and Environment University College London Darwin Building Gower Street London WC1E 6BT UK.
  2. Institut de Systématique, Évolution, Biodiversité ISYEB - UMR 7205 - CNRS MNHN UPMC EPHE Muséum National d'Histoire Naturelle Sorbonne Universités 57 rue Cuvier, CP50 Paris F-75005 France.
  3. McGuire Center for Lepidoptera Florida Museum of Natural History University of Florida P.O. Box 112710 Gainesville FL 32611-2710 USA.
  4. Department of Organismic and Evolutionary Biology Harvard University Biology Laboratories 16 Divinity Avenue Cambridge MA 02138 USA.
  5. Department of Genetics, Evolution and Environment University College London Darwin Building Gower Street London WC1E 6BT UK.

PMID: 27546953 PMCID: PMC4973677 DOI: 10.1111/jbi.12611

Abstract

AIM: Despite the greatest butterfly diversity on Earth occurring in the Neotropical Andes and Amazonia, there is still keen debate about the origins of this exceptional biota. A densely sampled calibrated phylogeny for a widespread butterfly subtribe, Oleriina (Nymphalidae: Ithomiini) was used to estimate the origin, colonization history and diversification of this species-rich group.

LOCATION: Neotropics.

METHODS: Ancestral elevation and biogeographical ranges were reconstructed using data generated from detailed range maps and applying the dispersal-extinction-cladogenesis model using stratified palaeogeographical time slice matrices. The pattern of diversification through time was examined by comparing constant and variable rate models. We also tested the hypothesis that a change in elevation is associated with speciation.

RESULTS: The Oleriina likely originated in the Andes in the Early to Middle Miocene and rapidly diversified to include four genera all of which also originated in the Andes. These clades, together with four species groups, experienced varying spatial and temporal patterns of diversification. An overall early burst and decreasing diversification rate is identified, and this pattern is reflected for most subclades.

MAIN CONCLUSIONS: Changes in the palaeogeological landscape, particularly the prolonged uplift of the Andes, had a profound impact on the diversification of the subtribe. The Oleriina mostly remained within the Andes and vicariant speciation resulted in some instances. Dynamic dispersal occurred with the disappearance of geological barriers such as the Acre System and the subtribe exploited newly available habitats. Our results confirm the role of the Andean uplift in the evolution of Neotropical biodiversity.

Keywords: Andes; Hyposcada; Ithomiini butterflies; Megoleria; Neotropics; Oleria; Ollantaya; biogeography; diversification

References

  1. Evol Bioinform Online. 2007 Feb 14;2:273-6 - PubMed
  2. Mol Phylogenet Evol. 2010 Jun;55(3):1032-41 - PubMed
  3. Proc Biol Sci. 2011 Jun 22;278(1713):1777-85 - PubMed
  4. Sci Am. 2006 May;294(5):52-9 - PubMed
  5. PLoS One. 2012;7(9):e43348 - PubMed
  6. Ecol Lett. 2013 Sep;16(9):1135-44 - PubMed
  7. Mol Ecol. 2013 Mar;22(5):1193-213 - PubMed
  8. Syst Biol. 2004 Oct;53(5):673-84 - PubMed
  9. Am Nat. 2014 Jan;183(1):26-39 - PubMed
  10. Mol Ecol. 2009 Apr;18(8):1716-29 - PubMed
  11. Proc Biol Sci. 2012 Apr 7;279(1732):1300-9 - PubMed
  12. Proc Biol Sci. 2004 Aug 7;271 Suppl 5:S266-9 - PubMed
  13. Mol Biol Evol. 2012 Aug;29(8):1969-73 - PubMed
  14. PLoS Biol. 2008 Dec 2;6(12):2642-9 - PubMed
  15. Mol Phylogenet Evol. 2013 Jan;66(1):54-68 - PubMed
  16. Proc Biol Sci. 2012 Dec 22;279(1749):4907-13 - PubMed
  17. Proc Biol Sci. 2008 Oct 22;275(1649):2363-71 - PubMed
  18. Proc Biol Sci. 2000 Nov 22;267(1459):2267-72 - PubMed
  19. Science. 1995 Jul 7;269(5220):63-6 - PubMed
  20. PLoS Biol. 2009 Mar 10;7(3):e56 - PubMed
  21. Am Nat. 1992 Sep;140(3):531-7 - PubMed
  22. Proc Biol Sci. 2009 Dec 22;276(1677):4295-302 - PubMed
  23. Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9749-54 - PubMed
  24. Evolution. 2006 Jul;60(7):1454-66 - PubMed
  25. Syst Biol. 2008 Feb;57(1):4-14 - PubMed
  26. Mol Phylogenet Evol. 2007 Sep;44(3):1257-72 - PubMed
  27. Proc Biol Sci. 2005 Dec 7;272(1580):2457-66 - PubMed
  28. Science. 2015 Apr 10;348(6231):226-9 - PubMed
  29. PLoS One. 2008 Jul 30;3(7):e2791 - PubMed
  30. Science. 2008 Jun 6;320(5881):1304-7 - PubMed
  31. Science. 2010 Nov 12;330(6006):927-31 - PubMed
  32. Bioinformatics. 2004 Jan 22;20(2):289-90 - PubMed
  33. Syst Biol. 2015 May;64(3):505-24 - PubMed

Publication Types