Display options
Share it on

Ecol Evol. 2016 Jun 12;6(14):4711-30. doi: 10.1002/ece3.2243. eCollection 2016 Jul.

Dietary choice for a balanced nutrient intake increases the mean and reduces the variance in the reproductive performance of male and female cockroaches.

Ecology and evolution

Harriet Bunning, Lee Bassett, Christina Clowser, James Rapkin, Kim Jensen, Clarissa M House, Catharine R Archer, John Hunt

Affiliations

  1. Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Tremough Campus Penryn TR10 9EZ UK.
  2. Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Tremough Campus Penryn TR10 9EZ UK; Department of Entomology North Carolina State University Gardner Hall Raleigh North Carolina 27695-7613.
  3. Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Tremough Campus Penryn TR10 9EZ UK; MaxNetAging School Max Planck Institute for Demographic Research Konrad-Zuse-Straße 118057 Rostock Germany.

PMID: 27547307 PMCID: PMC4979701 DOI: 10.1002/ece3.2243

Abstract

Sexual selection may cause dietary requirements for reproduction to diverge across the sexes and promote the evolution of different foraging strategies in males and females. However, our understanding of how the sexes regulate their nutrition and the effects that this has on sex-specific fitness is limited. We quantified how protein (P) and carbohydrate (C) intakes affect reproductive traits in male (pheromone expression) and female (clutch size and gestation time) cockroaches (Nauphoeta cinerea). We then determined how the sexes regulate their intake of nutrients when restricted to a single diet and when given dietary choice and how this affected expression of these important reproductive traits. Pheromone levels that improve male attractiveness, female clutch size and gestation time all peaked at a high daily intake of P:C in a 1:8 ratio. This is surprising because female insects typically require more P than males to maximize reproduction. The relatively low P requirement of females may reflect the action of cockroach endosymbionts that help recycle stored nitrogen for protein synthesis. When constrained to a single diet, both sexes prioritized regulating their daily intake of P over C, although this prioritization was stronger in females than males. When given the choice between diets, both sexes actively regulated their intake of nutrients at a 1:4.8 P:C ratio. The P:C ratio did not overlap exactly with the intake of nutrients that optimized reproductive trait expression. Despite this, cockroaches of both sexes that were given dietary choice generally improved the mean and reduced the variance in all reproductive traits we measured relative to animals fed a single diet from the diet choice pair. This pattern was not as strong when compared to the single best diet in our geometric array, suggesting that the relationship between nutrient balancing and reproduction is complex in this species.

Keywords: Geometric framework of nutrition; optimal foraging; pheromones; sexual selection

References

  1. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9171-6 - PubMed
  2. J Insect Physiol. 2001 Sep;47(10):1169-1180 - PubMed
  3. J Evol Biol. 2003 May;16(3):523-30 - PubMed
  4. Am J Physiol Regul Integr Comp Physiol. 2004 Oct;287(4):R934-42 - PubMed
  5. Am J Clin Nutr. 2005 Jul;82(1):41-8 - PubMed
  6. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6050-4 - PubMed
  7. Bone. 2007 Apr;40(4):1095-102 - PubMed
  8. Obesity (Silver Spring). 2008 Mar;16(3):566-71 - PubMed
  9. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2498-503 - PubMed
  10. Curr Biol. 2008 Jul 22;18(14):1062-6 - PubMed
  11. J Anim Ecol. 2009 Mar;78(2):437-46 - PubMed
  12. Trends Ecol Evol. 2009 May;24(5):280-8 - PubMed
  13. Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19521-6 - PubMed
  14. Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4607-11 - PubMed
  15. J Insect Physiol. 2010 Nov;56(11):1685-95 - PubMed
  16. Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15503-7 - PubMed
  17. Evolution. 2011 Jun;65(6):1594-606 - PubMed
  18. Proc Biol Sci. 2012 Jun 7;279(1736):2212-8 - PubMed
  19. Biol Open. 2012 Dec 15;1(12):1185-91 - PubMed
  20. Ecology. 2013 Mar;94(3):565-72 - PubMed
  21. Am Nat. 2013 Jul;182(1):91-102 - PubMed
  22. J Anim Ecol. 2014 Jan;83(1):245-55 - PubMed
  23. Genomics. 2013 Nov-Dec;102(5-6):479-83 - PubMed
  24. Amino Acids. 2014 Jun;46(6):1449-58 - PubMed
  25. Biol Lett. 2014 Jul;10(7):null - PubMed
  26. Br J Nutr. 2014 Oct 14;112(7):1226-33 - PubMed
  27. Proc Biol Sci. 2014 Oct 7;281(1792):null - PubMed
  28. PLoS One. 2014 Aug 29;9(8):e105864 - PubMed
  29. Behav Ecol. 2014 Sep;25(5):1048-1057 - PubMed
  30. J Insect Physiol. 2014 Dec;71:37-45 - PubMed
  31. Ecol Lett. 2015 Mar;18(3):273-86 - PubMed
  32. Proc Biol Sci. 2015 Mar 7;282(1802):null - PubMed
  33. J Evol Biol. 2015 Apr;28(4):906-16 - PubMed
  34. Aging Cell. 2015 Aug;14(4):605-15 - PubMed
  35. Cell. 2015 Mar 26;161(1):18-23 - PubMed
  36. Am Nat. 2015 Nov;186(5):649-59 - PubMed
  37. Evolution. 1983 Nov;37(6):1210-1226 - PubMed
  38. J Evol Biol. 2001 Jan 8;14(1):68-74 - PubMed
  39. Genetics. 1974 Mar;76(3):601-6 - PubMed
  40. J Insect Physiol. 1965 Oct;11(10):1401-5 - PubMed
  41. Appetite. 1997 Jun;28(3):201-13 - PubMed

Publication Types