Display options
Share it on

Vasc Cell. 2016 Aug 18;8:3. doi: 10.1186/s13221-016-0037-3. eCollection 2016.

Angiogenic and anti-inflammatory properties of micro-fragmented fat tissue and its derived mesenchymal stromal cells.

Vascular cell

Valentina Ceserani, Anna Ferri, Angiola Berenzi, Anna Benetti, Emilio Ciusani, Luisa Pascucci, Cinzia Bazzucchi, Valentina Coccè, Arianna Bonomi, Augusto Pessina, Erica Ghezzi, Offer Zeira, Piero Ceccarelli, Silvia Versari, Carlo Tremolada, Giulio Alessandri

Affiliations

  1. Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Via Celoria 11, 20131 Milan, Italy.
  2. Department of Clinical and Experimental Sciences, Institute of Pathological Anatomy, University of Brescia, Brescia, Italy.
  3. Laboratory of Clinical Pathology and Neurogenetic Medicine, Fondazione IRCCS Neurological Institute C. Besta, Milan, Italy.
  4. Department of Veterinary Medicine, University of Perugia, Perugia, Italy.
  5. Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
  6. San Michele Veterinary Hospital, Tavezzano con Villavesco, Lodi, Italy.
  7. Image Institute, Milan, Italy.

PMID: 27547374 PMCID: PMC4991117 DOI: 10.1186/s13221-016-0037-3

Abstract

BACKGROUND: Adipose-derived mesenchymal stromal cells (Ad-MSCs) are a promising tool for advanced cell-based therapies. They are routinely obtained enzymatically from fat lipoaspirate (LP) as SVF, and may undergo prolonged ex vivo expansion, with significant senescence and decline in multipotency. Besides, these techniques have complex regulatory issues, thus incurring in the compelling requirements of GMP guidelines. Hence, availability of a minimally manipulated, autologous adipose tissue would have remarkable biomedical and clinical relevance. For this reason, a new device, named Lipogems® (LG), has been developed. This ready-to-use adipose tissue cell derivate has been shown to have in vivo efficacy upon transplantation for ischemic and inflammatory diseases. To broaden our knowledge, we here investigated the angiogenic and anti-inflammatory properties of LG and its derived MSC (LG-MSCs) population.

METHODS: Human LG samples and their LG-MSCs were analyzed by immunohistochemistry for pericyte, endothelial and mesenchymal stromal cell marker expression. Angiogenesis was investigated testing the conditioned media (CM) of LG (LG-CM) and LG-MSCs (LG-MSCs-CM) on cultured endothelial cells (HUVECs), evaluating proliferation, cord formation, and the expression of the adhesion molecules (AM) VCAM-1 and ICAM-1. The macrophage cell line U937 was used to evaluate the anti-inflammatory properties, such as migration, adhesion on HUVECs, and release of RANTES and MCP-1.

RESULTS: Our results indicate that LG contained a very high number of mesenchymal cells expressing NG2 and CD146 (both pericyte markers) together with an abundant microvascular endothelial cell (mEC) population. Substantially, both LG-CM and LG-MSC-CM increased cord formation, inhibited endothelial ICAM-1 and VCAM-1 expression following TNFα stimulation, and slightly improved HUVEC proliferation. The addition of LG-CM and LG-MSC-CM strongly inhibited U937 migration upon stimulation with the chemokine MCP-1, reduced their adhesion on HUVECs and significantly suppressed the release of RANTES and MCP-1.

CONCLUSIONS: Our data indicate that LG micro-fragmented adipose tissue retains either per se, or in its embedded MSCs content, the capacity to induce vascular stabilization and to inhibit several macrophage functions involved in inflammation.

References

  1. Exp Cell Res. 2010 Jul 1;316(11):1804-15 - PubMed
  2. J Leukoc Biol. 1999 Nov;66(5):698-704 - PubMed
  3. Mol Biol Cell. 2002 Dec;13(12):4279-95 - PubMed
  4. Stem Cells Dev. 2010 Oct;19(10):1449-70 - PubMed
  5. Inflamm Bowel Dis. 2006 Jan;12(1):16-21 - PubMed
  6. Semin Cancer Biol. 2005 Oct;15(5):378-86 - PubMed
  7. Cell Transplant. 2010;19(10):1217-23 - PubMed
  8. Cell Stem Cell. 2008 Sep 11;3(3):301-13 - PubMed
  9. Vasc Cell. 2011 Feb 08;3(1):5 - PubMed
  10. PLoS One. 2015 Feb 11;10(2):e0117068 - PubMed
  11. J Pathol. 2009 Jan;217(2):318-24 - PubMed
  12. Clin Exp Metastasis. 1999;17(8):655-62 - PubMed
  13. Stem Cells. 2013 Oct;31(10):2042-6 - PubMed
  14. Chir Organi Mov. 2008 Apr;91(3):147-51 - PubMed
  15. Mol Immunol. 1998 Jun;35(8):479-85 - PubMed
  16. Cell Stem Cell. 2008 Sep 11;3(3):229-30 - PubMed
  17. Br J Haematol. 2013 Mar;160(6):766-78 - PubMed
  18. J Cell Physiol. 2006 Apr;207(1):107-13 - PubMed
  19. Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16766-71 - PubMed
  20. Cytotherapy. 2006;8(4):315-7 - PubMed
  21. Toxicol Pathol. 2006;34(6):763-75 - PubMed
  22. Biochem Biophys Res Commun. 2013 Jul 5;436(3):418-23 - PubMed
  23. Transplantation. 2010 Mar 15;89(5):509-17 - PubMed
  24. Circ Res. 2008 Jan 4;102(1):77-85 - PubMed
  25. Cell Physiol Biochem. 2004;14(4-6):311-24 - PubMed
  26. Cell Transplant. 2015;24(7):1233-52 - PubMed
  27. J Immunol. 1999 Feb 1;162(3):1648-55 - PubMed
  28. J Leukoc Biol. 1996 Sep;60(3):365-71 - PubMed
  29. Cancer Lett. 2013 Jan 1;328(1):18-26 - PubMed
  30. J Cell Mol Med. 2009 Jul;13(7):1211-20 - PubMed
  31. Cardiovasc Res. 1996 Oct;32(4):687-98 - PubMed
  32. Science. 1999 Apr 2;284(5411):143-7 - PubMed
  33. Immunol Lett. 1999 Apr 15;67(3):223-7 - PubMed
  34. J Leukoc Biol. 1997 Nov;62(5):676-80 - PubMed
  35. Cell Transplant. 2013;22(11):2063-77 - PubMed
  36. J Cell Mol Med. 2015 Mar;19(3):511-20 - PubMed
  37. Cancer Res. 2008 Oct 15;68(20):8626-34 - PubMed

Publication Types