Display options
Share it on

Sci Rep. 2016 Sep 30;6:34274. doi: 10.1038/srep34274.

Characterization of Amyloid Cores in Prion Domains.

Scientific reports

Ricardo Sant'Anna, Maria Rosario Fernández, Cristina Batlle, Susanna Navarro, Natalia S de Groot, Louise Serpell, Salvador Ventura

Affiliations

  1. Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
  2. School of Life Sciences, University of Sussex, Falmer, BN1 9QG, UK.

PMID: 27686217 PMCID: PMC5043269 DOI: 10.1038/srep34274

Abstract

Amyloids consist of repetitions of a specific polypeptide chain in a regular cross-β-sheet conformation. Amyloid propensity is largely determined by the protein sequence, the aggregation process being nucleated by specific and short segments. Prions are special amyloids that become self-perpetuating after aggregation. Prions are responsible for neuropathology in mammals, but they can also be functional, as in yeast prions. The conversion of these last proteins to the prion state is driven by prion forming domains (PFDs), which are generally large, intrinsically disordered, enriched in glutamines/asparagines and depleted in hydrophobic residues. The self-assembly of PFDs has been thought to rely mostly on their particular amino acid composition, rather than on their sequence. Instead, we have recently proposed that specific amyloid-prone sequences within PFDs might be key to their prion behaviour. Here, we demonstrate experimentally the existence of these amyloid stretches inside the PFDs of the canonical Sup35, Swi1, Mot3 and Ure2 prions. These sequences self-assemble efficiently into highly ordered amyloid fibrils, that are functionally competent, being able to promote the PFD amyloid conversion in vitro and in vivo. Computational analyses indicate that these kind of amyloid stretches may act as typical nucleating signals in a number of different prion domains.

References

  1. Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5201-6 - PubMed
  2. Genetics. 1998 Jun;149(2):879-92 - PubMed
  3. Methods Mol Biol. 2012;849:121-35 - PubMed
  4. Protein Sci. 1993 Mar;2(3):404-10 - PubMed
  5. Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4:16446-53 - PubMed
  6. J Mol Biol. 2004 Sep 3;342(1):345-53 - PubMed
  7. Adv Protein Chem. 2001;59:391-412 - PubMed
  8. Biotechnol J. 2011 Jun;6(6):674-85 - PubMed
  9. Nature. 2004 Mar 18;428(6980):323-8 - PubMed
  10. Cell Mol Life Sci. 2014 Jun;71(11):2047-63 - PubMed
  11. Methods Mol Biol. 2013;932:237-57 - PubMed
  12. J Mol Biol. 2010 Nov 26;404(2):337-52 - PubMed
  13. Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8584-9 - PubMed
  14. PLoS Comput Biol. 2013;9(10):e1003291 - PubMed
  15. PLoS Comput Biol. 2015 Jan 08;11(1):e1004013 - PubMed
  16. Chem Commun (Camb). 2013 Jun 28;49(51):5745-7 - PubMed
  17. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W301-7 - PubMed
  18. PLoS One. 2012;7(10):e46829 - PubMed
  19. Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10584-9 - PubMed
  20. Prion. 2014;8(3):233-9 - PubMed
  21. Front Aging Neurosci. 2015 Mar 02;7:18 - PubMed
  22. FEBS J. 2006 Feb;273(3):658-68 - PubMed
  23. Annu Rev Biochem. 2004;73:617-56 - PubMed
  24. Adv Exp Med Biol. 2015;855:213-39 - PubMed
  25. Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16672-7 - PubMed
  26. Science. 1973 Jul 20;181(4096):223-30 - PubMed
  27. Cell. 1992 May 15;69(4):573-5 - PubMed
  28. Science. 1994 Apr 22;264(5158):566-9 - PubMed
  29. Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12825-30 - PubMed
  30. Physiol Rev. 2009 Oct;89(4):1105-52 - PubMed
  31. Nature. 2006 Aug 3;442(7102):585-9 - PubMed
  32. Biochim Biophys Acta. 2009 Mar;1794(3):375-97 - PubMed
  33. Nature. 2005 Jun 9;435(7043):773-8 - PubMed
  34. Biochim Biophys Acta. 2013 Oct;1828(10):2328-38 - PubMed
  35. Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3487-92 - PubMed
  36. PLoS Comput Biol. 2015 Sep 04;11(9):e1004374 - PubMed
  37. Nucleic Acids Res. 2015 Jul 1;43(W1):W331-7 - PubMed
  38. Brain Res. 2012 Jun 26;1462:61-80 - PubMed
  39. Annu Rev Biochem. 2006;75:333-66 - PubMed
  40. Curr Pharm Des. 2014;20(8):1223-43 - PubMed
  41. Cell. 1997 May 30;89(5):811-9 - PubMed
  42. Methods Mol Biol. 2012;819:199-220 - PubMed
  43. Nat Biotechnol. 2004 Oct;22(10):1302-6 - PubMed
  44. Proc Natl Acad Sci U S A. 2004 May 11;101(19):7258-63 - PubMed
  45. Nat Genet. 2008 Apr;40(4):460-5 - PubMed
  46. Prion. 2015;9(3):200-6 - PubMed
  47. Protein Sci. 2004 Jul;13(7):1933-8 - PubMed
  48. Biomacromolecules. 2012 Feb 13;13(2):474-83 - PubMed
  49. Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3 - PubMed
  50. Nature. 2012 Feb 15;482(7385):363-8 - PubMed
  51. Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6519-24 - PubMed
  52. Nature. 2000 Sep 28;407(6803):477-83 - PubMed
  53. Adv Genet. 2016;93:191-236 - PubMed
  54. Nature. 2013 Mar 28;495(7442):467-73 - PubMed
  55. Mol Cell Biol. 2010 Jan;30(1):319-32 - PubMed
  56. Genetics. 1994 Jul;137(3):671-6 - PubMed
  57. BMC Struct Biol. 2005 Sep 30;5:18 - PubMed
  58. Biochim Biophys Acta. 2013 May;1834(5):918-31 - PubMed
  59. Annu Rev Biophys. 2012;41:63-79 - PubMed
  60. Acc Chem Res. 2006 Sep;39(9):620-7 - PubMed
  61. Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16537-8 - PubMed
  62. J Mol Biol. 2006 Feb 3;355(5):1037-47 - PubMed

Publication Types