Display options
Share it on

Ann Clin Transl Neurol. 2016 Apr 27;3(6):443-54. doi: 10.1002/acn3.311. eCollection 2016 Jun.

Compromised fidelity of B-cell tolerance checkpoints in AChR and MuSK myasthenia gravis.

Annals of clinical and translational neurology

Jae-Yun Lee, Panos Stathopoulos, Sasha Gupta, Jason M Bannock, Richard J Barohn, Elizabeth Cotzomi, Mazen M Dimachkie, Leslie Jacobson, Casey S Lee, Henner Morbach, Luis Querol, Jing-Li Shan, Jason A Vander Heiden, Patrick Waters, Angela Vincent, Richard J Nowak, Kevin C O'Connor

Affiliations

  1. Department of Neurology Yale School of Medicine New Haven Connecticut.
  2. Department of Immunobiology Yale School of Medicine New Haven Connecticut.
  3. Department of Neurology University of Kansas Medical Center Kansas City Kansas.
  4. Nuffield Department of Clinical Neurosciences John Radcliffe Hospital, University of Oxford Oxford UK.
  5. Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau Universitat Autónoma de Barcelona Spain.
  6. Interdepartmental Program in Computational Biology and Bioinformatics Yale University New Haven Connecticut.

PMID: 27547772 PMCID: PMC4891998 DOI: 10.1002/acn3.311

Abstract

OBJECTIVE: Myasthenia gravis (MG) is an autoimmune condition in which neurotransmission is impaired by binding of autoantibodies to acetylcholine receptors (AChR) or, in a minority of patients, to muscle specific kinase (MuSK). There are differences in the dominant IgG subclass, pathogenic mechanisms, and treatment responses between the two MG subtypes (AChR or MuSK). The antibodies are thought to be T-cell dependent, but the mechanisms underlying their production are not well understood. One aspect not previously described is whether defects in central and peripheral tolerance checkpoints, which allow autoreactive B cells to accumulate in the naive repertoire, are found in both or either form of MG.

METHODS: An established set of assays that measure the frequency of both polyreactive and autoreactive B cell receptors (BCR) in naive populations was applied to specimens collected from patients with either AChR or MuSK MG and healthy controls. Radioimmuno- and cell-based assays were used to measure BCR binding to AChR and MuSK.

RESULTS: The frequency of polyreactive and autoreactive BCRs (n = 262) was higher in both AChR and MuSK MG patients than in healthy controls. None of the MG-derived BCRs bound AChR or MuSK.

INTERPRETATION: The results indicate that both these MG subtypes harbor defects in central and peripheral B cell tolerance checkpoints. Defective B cell tolerance may represent a fundamental contributor to autoimmunity in MG and is of particular importance when considering the durability of myasthenia gravis treatment strategies, particularly biologics that eliminate B cells.

References

  1. Acta Neurol Scand Suppl. 2006;183:19-23 - PubMed
  2. Nat Clin Pract Neurol. 2008 Jun;4(6):317-27 - PubMed
  3. Neurology. 1981 Mar;31(3):282-7 - PubMed
  4. J Allergy Clin Immunol. 2014 Apr;133(4):1149-61 - PubMed
  5. J Exp Med. 2005 May 16;201(10):1659-67 - PubMed
  6. Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20783-8 - PubMed
  7. Nat Med. 2001 Mar;7(3):365-8 - PubMed
  8. J Clin Invest. 2013 Jun;123(6):2737-41 - PubMed
  9. J Autoimmun. 2014 Aug;52:53-63 - PubMed
  10. Arthritis Rheum. 2011 May;63(5):1237-45 - PubMed
  11. J Exp Med. 2007 Jul 9;204(7):1583-93 - PubMed
  12. Autoimmunity. 2015;48(6):362-8 - PubMed
  13. Blood. 2005 Jan 15;105(2):735-41 - PubMed
  14. Immunity. 2008 Nov 14;29(5):746-57 - PubMed
  15. Clin Immunol. 2012 Dec;145(3):209-23 - PubMed
  16. Neurology. 2012 Jan 17;78(3):189-93 - PubMed
  17. Immunology. 2002 Jan;105(1):9-19 - PubMed
  18. J Clin Invest. 2011 Sep;121(9):3635-44 - PubMed
  19. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W503-8 - PubMed
  20. PLoS One. 2013 Nov 07;8(11):e80695 - PubMed
  21. Science. 2007 Sep 14;317(5844):1554-7 - PubMed
  22. J Exp Med. 2004 Jan 5;199(1):145-50 - PubMed
  23. Adv Immunol. 2007;95:83-110 - PubMed
  24. Ann Neurol. 2011 Feb;69(2):418-22 - PubMed
  25. J Clin Invest. 2016 Jan;126(1):282-7 - PubMed
  26. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W34-40 - PubMed
  27. Clin Exp Immunol. 1987 Jan;67(1):82-8 - PubMed
  28. J Clin Invest. 2012 Jun;122(6):2141-52 - PubMed
  29. Arch Neurol. 2012 Aug;69(8):994-1001 - PubMed
  30. Curr Opin Immunol. 2008 Dec;20(6):632-8 - PubMed
  31. J Exp Med. 1976 Sep 1;144(3):739-53 - PubMed
  32. J Neuroimmunol. 2008 Mar;195(1-2):151-6 - PubMed
  33. Science. 2003 Sep 5;301(5638):1374-7 - PubMed
  34. J Immunol. 1987 May 15;138(10):3269-75 - PubMed
  35. Clin Exp Immunol. 1982 Aug;49(2):266-72 - PubMed
  36. Nat Rev Immunol. 2002 Oct;2(10):797-804 - PubMed
  37. Ann N Y Acad Sci. 1987;505:326-32 - PubMed
  38. Ther Adv Neurol Disord. 2011 Sep;4(5):259-66 - PubMed
  39. Brain. 2008 Jul;131(Pt 7):1940-52 - PubMed
  40. Muscle Nerve. 1986 May;9(4):306-12 - PubMed
  41. Ann N Y Acad Sci. 1987;505:526-38 - PubMed
  42. Ann N Y Acad Sci. 2003 Sep;998:413-23 - PubMed
  43. Brain. 2012 Apr;135(Pt 4):1081-101 - PubMed
  44. Autoimmun Rev. 2014 Oct;13(10):1003-7 - PubMed
  45. Curr Opin Neurol. 2013 Oct;26(5):459-65 - PubMed
  46. Blood. 2013 Feb 28;121(9):1595-603 - PubMed
  47. J Neurosci. 1983 Mar;3(3):576-84 - PubMed
  48. J Exp Med. 2005 Mar 7;201(5):703-11 - PubMed
  49. Exp Neurol. 2012 Apr;234(2):506-12 - PubMed

Publication Types

Grant support