Display options
Share it on

BMC Microbiol. 2016 Sep 29;16(1):228. doi: 10.1186/s12866-016-0840-2.

Evaluation of bacteriocinogenic activity, safety traits and biotechnological potential of fecal lactic acid bacteria (LAB), isolated from Griffon Vultures (Gyps fulvus subsp. fulvus).

BMC microbiology

Sara Arbulu, Juan J Jiménez, Loreto Gútiez, Cristina Campanero, Rosa Del Campo, Luis M Cintas, Carmen Herranz, Pablo E Hernández

Affiliations

  1. Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
  2. Servicio de Microbiología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28034, Madrid, Spain.
  3. Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain. [email protected].

PMID: 27688001 PMCID: PMC5041338 DOI: 10.1186/s12866-016-0840-2

Abstract

BACKGROUND: Lactic acid bacteria (LAB) are part of the gut microbiota and produce ribosomally synthesized antimicrobial peptides or bacteriocins with interest as natural food preservatives and therapeutic agents. Bacteriocin-producing LAB are also attractive as probiotics. Griffon vultures (Gyps fulvus subspecies fulvus) are scavenger birds that feed almost exclusively on carrion without suffering apparent ill effects. Therefore, griffon vultures might be considered a reservoir of bacteriocin-producing lactic acid bacteria (LAB) with potential biotechnological applications.

RESULTS: Griffon vulture feces were screened for LAB with antimicrobial activity, genes encoding bacteriocins, potential virulence determinants, susceptibility to antibiotics, genotyping and characterization of bacteriocins. In this study, from 924 LAB evaluated 332 isolates (36 %) showed direct antimicrobial activity against Gram-positive bacteria only. The molecular identification of the most antagonistic 95 isolates showed that enterococci was the largest LAB group with antimicrobial activity (91 %) and E. faecium (40 %) the most identified antagonistic species. The evaluation of the presence of bacteriocin structural genes in 28 LAB isolates with the highest bacteriocinogenic activity in their supernatants determined that most enterococcal isolates (75 %) encoded multiple bacteriocins, being enterocin A (EntA) the largest identified (46 %) bacteriocin. Most enterococci (88 %) were resistant to multiple antibiotics. ERIC-PCR and MLST techniques permitted genotyping and recognition of the potential safety of the bacteriocinogenic enterococci. A multiple-step chromatographic procedure, determination of the N-terminal amino acid sequence of purified bacteriocins by Edman degradation and a MALDI TOF/TOF tandem MS procedure permitted characterization of bacteriocins present in supernatants of producer cells.

CONCLUSIONS: Enterococci was the largest LAB group with bacteriocinogenic activity isolated from griffon vulture feces. Among the isolates, E. faecium M3K31 has been identified as producer of enterocin HF (EntHF), a bacteriocin with remarkable antimicrobial activity against most evaluated Listeria spp. and of elevated interest as a natural food preservative. E. faecium M3K31 would be also considered a safe probiotic strain for use in animal nutrition.

Keywords: Antimicrobial activity; Bacteriocins; Enterococci; Lactic acid bacteria (LAB); Probiotics; Virulence traits

References

  1. J Clin Microbiol. 2006 Jun;44(6):2220-8 - PubMed
  2. J Appl Microbiol. 2000 Sep;89(3):511-6 - PubMed
  3. Appl Environ Microbiol. 2002 Aug;68(8):3830-40 - PubMed
  4. PLoS One. 2012;7(2):e31113 - PubMed
  5. PLoS One. 2015 Oct 07;10(10):e0139734 - PubMed
  6. J Agric Food Chem. 2014 Jun 18;62(24):5555-64 - PubMed
  7. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2384-9 - PubMed
  8. Nat Rev Microbiol. 2012 Mar 16;10(4):266-78 - PubMed
  9. Adv Food Nutr Res. 2009;56:1-15 - PubMed
  10. Microb Ecol. 2015 Apr;69(3):597-607 - PubMed
  11. Int J Food Microbiol. 2007 Jul 15;117(3):295-305 - PubMed
  12. Microbiology. 1997 Jul;143 ( Pt 7):2287-94 - PubMed
  13. Appl Environ Microbiol. 2006 Dec;72(12):7634-43 - PubMed
  14. J Agric Food Chem. 2015 Dec 16;63(49):10689-95 - PubMed
  15. MBio. 2012 Jul 17;3(4):e00151-12 - PubMed
  16. Appl Environ Microbiol. 2001 Apr;67(4):1628-35 - PubMed
  17. Appl Environ Microbiol. 2010 Jan;76(2):483-92 - PubMed
  18. Appl Environ Microbiol. 2011 Jan;77(1):369-73 - PubMed
  19. Antimicrob Agents Chemother. 2004 Jul;48(7):2778-81 - PubMed
  20. Nat Rev Microbiol. 2013 Feb;11(2):95-105 - PubMed
  21. Int J Food Microbiol. 2016 Mar 16;221:12-8 - PubMed
  22. Microb Cell Fact. 2015 Oct 15;14:166 - PubMed
  23. Appl Microbiol Biotechnol. 2007 Sep;76(3):667-75 - PubMed
  24. J Clin Microbiol. 2001 Dec;39(12 ):4296-301 - PubMed
  25. Appl Environ Microbiol. 2012 Jan;78(1):1-6 - PubMed
  26. J Bacteriol. 2010 Nov;192(22):5906-13 - PubMed
  27. Appl Environ Microbiol. 2014 Nov;80(21):6714-23 - PubMed
  28. Curr Opin Microbiol. 2006 Oct;9(5):454-60 - PubMed
  29. Int J Food Microbiol. 2011 Dec 2;151(2):125-40 - PubMed
  30. Proteomics. 2012 Feb;12(3):431-47 - PubMed
  31. BMC Microbiol. 2013 Jan 24;13:15 - PubMed
  32. Virulence. 2012 Aug 15;3(5):421-33 - PubMed
  33. Appl Environ Microbiol. 2000 Apr;66(4):1298-304 - PubMed
  34. Sci Rep. 2012;2:753 - PubMed
  35. FEMS Microbiol Rev. 2000 Jan;24(1):85-106 - PubMed
  36. Genome Announc. 2016 Mar 24;4(2):null - PubMed
  37. Appl Environ Microbiol. 2009 Sep;75(17):5708-13 - PubMed
  38. PLoS One. 2014 Apr 07;9(4):e94191 - PubMed
  39. J Food Prot. 2006 Mar;69(3):520-31 - PubMed
  40. Int J Food Microbiol. 2013 Aug 16;166(1):93-101 - PubMed
  41. Microbiology. 2011 Dec;157(Pt 12):3256-67 - PubMed
  42. Biomed Res Int. 2015;2015:767183 - PubMed
  43. Nat Rev Microbiol. 2005 Oct;3(10):777-88 - PubMed
  44. Foodborne Pathog Dis. 2012 Jan;9(1):68-74 - PubMed
  45. Antimicrob Agents Chemother. 2011 Jul;55(7):3272-7 - PubMed

Publication Types