Display options
Share it on

Cancer Inform. 2016 Sep 07;15:1-9. doi: 10.4137/CIN.S40300. eCollection 2016.

DNA Methylation Heterogeneity Patterns in Breast Cancer Cell Lines.

Cancer informatics

Sunny Tian, Karina Bertelsmann, Linda Yu, Shuying Sun

Affiliations

  1. Massachusetts Institute of Technology, Cambridge, MA, USA.
  2. Clear Creek High School, League City, TX, USA.
  3. St. John's School, Houston, TX, USA.
  4. Department of Mathematics, Texas State University, San Marcos, TX, USA.

PMID: 27688708 PMCID: PMC5032785 DOI: 10.4137/CIN.S40300

Abstract

Heterogeneous DNA methylation patterns are linked to tumor growth. In order to study DNA methylation heterogeneity patterns for breast cancer cell lines, we comparatively study four metrics: variance, I (2) statistic, entropy, and methylation state. Using the categorical metric methylation state, we select the two most heterogeneous states to identify genes that directly affect tumor suppressor genes and high- or moderate-risk breast cancer genes. Utilizing the Gene Set Enrichment Analysis software and the ConsensusPath Database visualization tool, we generate integrated gene networks to study biological relations of heterogeneous genes. This analysis has allowed us to contribute 19 potential breast cancer biomarker genes to cancer databases by locating "hub genes" - heterogeneous genes of significant biological interactions, selected from numerous cancer modules. We have discovered a considerable relationship between these hub genes and heterogeneously methylated oncogenes. Our results have many implications for further heterogeneity analyses of methylation patterns and early detection of breast cancer susceptibility.

Keywords: DNA methylation; heterogeneity; hub genes

References

  1. Nat Genet. 2011 Jun 26;43(8):768-75 - PubMed
  2. Stat Appl Genet Mol Biol. 2016 Mar;15(1):55-67 - PubMed
  3. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 - PubMed
  4. Bioinformatics. 2012 Jul 1;28(13):1795-6 - PubMed
  5. Stat Med. 2002 Jun 15;21(11):1539-58 - PubMed
  6. Nucleic Acids Res. 2011 May;39(9):e58 - PubMed
  7. Stat Appl Genet Mol Biol. 2016 Mar;15(1):69-81 - PubMed
  8. Cell Oncol (Dordr). 2011 Apr;34(2):71-88 - PubMed
  9. Nucleic Acids Res. 2013 Jan;41(Database issue):D793-800 - PubMed
  10. J Med Imaging Radiat Oncol. 2009 Apr;53(2):171-6 - PubMed
  11. BMJ. 2003 Sep 6;327(7414):557-60 - PubMed
  12. CA Cancer J Clin. 2014 Jan-Feb;64(1):52-62 - PubMed
  13. Endocr Relat Cancer. 2001 Jun;8(2):115-27 - PubMed
  14. PLoS One. 2011 Feb 25;6(2):e17490 - PubMed
  15. Nat Rev Genet. 2012 May 29;13(7):484-92 - PubMed
  16. Cancer Inform. 2015 Aug 09;14(Suppl 2):235-45 - PubMed
  17. Cell Stem Cell. 2015 Sep 3;17(3):260-71 - PubMed
  18. Cancer Res. 1986 Feb;46(2):461-6 - PubMed
  19. Acta Oncol. 2013 Jan;52(1):48-56 - PubMed
  20. Indian J Surg Oncol. 2010 Sep;1(3):218-23 - PubMed
  21. Nat Genet. 2004 Oct;36(10):1090-8 - PubMed
  22. CA Cancer J Clin. 2014 Jan-Feb;64(1):9-29 - PubMed
  23. Nucleic Acids Res. 2011 Jan;39(Database issue):D712-7 - PubMed
  24. Breast Cancer Res. 2014 Jun 03;16(3):R58 - PubMed
  25. Cancer Discov. 2014 Jul;4(7):804-15 - PubMed
  26. Genome Med. 2010 Nov 26;2(11):84 - PubMed
  27. Nucleic Acids Res. 2009 Jan;37(Database issue):D623-8 - PubMed

Publication Types