Display options
Share it on

Nat Commun. 2016 Aug 12;7:12403. doi: 10.1038/ncomms12403.

A robust molecular probe for Ångstrom-scale analytics in liquids.

Nature communications

Peter Nirmalraj, Damien Thompson, Christos Dimitrakopoulos, Bernd Gotsmann, Dumitru Dumcenco, Andras Kis, Heike Riel

Affiliations

  1. IBM Research-Zürich, Säumerstrasse 4, CH- 8803 Rüschlikon, Switzerland.
  2. Department of Physics and Energy, University of Limerick, Limerick V94 T9PX, Ireland.
  3. Materials and Surface Science Institute, University of Limerick, Limerick V94 T9PX, Ireland.
  4. Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-3110, USA.
  5. Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
  6. Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

PMID: 27516157 PMCID: PMC4990633 DOI: 10.1038/ncomms12403

Abstract

Traditionally, nanomaterial profiling using a single-molecule-terminated scanning probe is performed at the vacuum-solid interface often at a few Kelvin, but is not a notion immediately associated with liquid-solid interface at room temperature. Here, using a scanning tunnelling probe functionalized with a single C60 molecule stabilized in a high-density liquid, we resolve low-dimensional surface defects, atomic interfaces and capture Ångstrom-level bond-length variations in single-layer graphene and MoS2. Atom-by-atom controllable imaging contrast is demonstrated at room temperature and the electronic structure of the C60-metal probe complex within the encompassing liquid molecules is clarified using density functional theory. Our findings demonstrates that operating a robust single-molecular probe is not restricted to ultra-high vacuum and cryogenic settings. Hence the scope of high-precision analytics can be extended towards resolving sub-molecular features of organic elements and gauging ambient compatibility of emerging layered materials with atomic-scale sensitivity under experimentally less stringent conditions.

References

  1. Nat Nanotechnol. 2015 Dec;10(12):1070-6 - PubMed
  2. Nano Lett. 2014 Nov 12;14(11):6127-31 - PubMed
  3. Nat Chem. 2010 Oct;2(10):821-5 - PubMed
  4. Adv Mater. 2010 Aug 24;22(32):3506-20 - PubMed
  5. Science. 2004 Oct 22;306(5696):666-9 - PubMed
  6. Nature. 2010 Dec 23;468(7327):1088-90 - PubMed
  7. Nat Nanotechnol. 2007 May;2(5):285-9 - PubMed
  8. Nat Mater. 2011 Mar;10(3):165-6 - PubMed
  9. Science. 2011 Aug 19;333(6045):999-1003 - PubMed
  10. Nat Chem. 2011 Apr;3(4):273-8 - PubMed
  11. ACS Nano. 2014 May 27;8(5):5233-9 - PubMed
  12. Nano Lett. 2009 Dec;9(12):4446-51 - PubMed
  13. Sci Rep. 2016 Jan 08;6:19009 - PubMed
  14. J Phys Chem B. 2005 Mar 17;109(10):4290-302 - PubMed
  15. Nat Mater. 2013 Jun;12(6):554-61 - PubMed
  16. Nat Commun. 2015 Feb 17;6:6298 - PubMed
  17. Nanotechnology. 2014 Sep 19;25(37):375703 - PubMed
  18. Nat Nanotechnol. 2011 Mar;6(3):147-50 - PubMed
  19. Sci Rep. 2015 Jun 15;5:11378 - PubMed
  20. ACS Nano. 2015;9(4):3858-65 - PubMed
  21. Science. 2014 May 23;344(6186):885-8 - PubMed
  22. Nat Chem. 2013 Jan;5(1):36-41 - PubMed
  23. Inorg Chem. 2014 Oct 6;53(19):10347-58 - PubMed
  24. ACS Nano. 2013 Nov 26;7(11):9860-6 - PubMed
  25. Nat Nanotechnol. 2011 Jan;6(1):23-7 - PubMed
  26. Sci Rep. 2014 Oct 20;4:6678 - PubMed
  27. Science. 2011 Feb 4;331(6017):568-71 - PubMed
  28. Phys Rev Lett. 2014 Nov 28;113(22):226101 - PubMed
  29. Nano Lett. 2014 Dec 10;14(12):6964-70 - PubMed
  30. Phys Rev Lett. 1991 Apr 22;66(16):2096-2099 - PubMed
  31. Science. 1986 Apr 11;232(4747):211-3 - PubMed
  32. ACS Nano. 2013 Nov 26;7(11):10032-7 - PubMed
  33. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10318-21 - PubMed
  34. Nat Chem. 2014 Nov;6(11):1017-23 - PubMed
  35. Nat Mater. 2007 Nov;6(11):858-61 - PubMed
  36. Phys Rev Lett. 2009 Nov 13;103(20):206803 - PubMed
  37. Phys Rev Lett. 2012 Jun 29;108(26):268302 - PubMed
  38. Langmuir. 2015 Sep 8;31(35):9700-6 - PubMed
  39. ACS Nano. 2013 Apr 23;7(4):3246-52 - PubMed
  40. Nat Nanotechnol. 2012 Feb 26;7(4):227-31 - PubMed
  41. Nature. 2009 Nov 19;462(7271):339-41 - PubMed
  42. Nat Mater. 2014 Oct;13(10):947-53 - PubMed

Publication Types