Display options
Share it on

J Occup Med Toxicol. 2016 Sep 21;11:46. doi: 10.1186/s12995-016-0135-4. eCollection 2016.

Fungal cell wall agents and bacterial lipopolysaccharide in organic dust as possible risk factors for pulmonary sarcoidosis.

Journal of occupational medicine and toxicology (London, England)

Sanja Stopinšek, Alojz Ihan, Barbara Salobir, Marjeta Terčelj, Saša Simčič

Affiliations

  1. Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
  2. Department for Respiratory and Allergic Diseases, University Medical Centre, Zaloška 2, SI-1000 Ljubljana, Slovenia.

PMID: 27688795 PMCID: PMC5031305 DOI: 10.1186/s12995-016-0135-4

Abstract

BACKGROUND: Composition of organic dust is very complex, involving particles of microbial, animal and plant origin. Several environmental exposure studies associate microbial cell wall agents in organic dust with various respiratory symptoms and diseases. The aim of the present study was to investigate the in vitro effects of the co-exposure of fungal cell wall agents (FCWAs) and bacterial lipopolysaccharide (LPS) on inflammatory immune responses of peripheral blood mononuclear cells (PBMCs) from patients with pulmonary sarcoidosis.

METHODS: PBMCs from 22 patients with pulmonary sarcoidosis and 20 healthy subjects were isolated and stimulated in vitro with FCWAs (soluble and particulate (1 → 3)-β-D-glucan, zymosan and chitosan) and/or LPS. Subsequently, cytokines were measured by ELISA and the mRNA expression of dectin-1, toll-like receptor 2 (TLR2), TLR4 and mannose receptor (MR) was analysed by real-time RT-PCR.

RESULTS: Patients with sarcoidosis had a significantly higher secretion of inflammatory cytokines tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-10 and IL-12 (1.7-fold, 2.0-fold, 2.2-fold, and 2.8-fold, respectively; all p < 0.05) after in vitro co-stimulation of PBMCs with FCWAs and LPS. We showed that PBMCs from patients with sarcoidosis had a higher baseline mRNA expression of dectin-1, TLR2, TLR4 and MR (6-fold, 11-fold, 18-fold, and 4-fold, respectively). Furthermore, we found a reduced expression of dectin-1, TLR2 and TLR4 after stimulation with FCWAs and/or LPS, although the reduction was significantly weaker in patients than in healthy subjects.

CONCLUSIONS: In conclusion, co-stimulation with FCWAs and LPS of PBMC from patients with sarcoidosis caused a weaker reduction of dectin-1, TLR2, TLR4 receptors expression, which could increase the sensitivity of PBMCs, leading to excessive inflammatory cytokine responses and result in the development or progression of pulmonary sarcoidosis.

Keywords: (1 → 3)-β-D-glucan; Cytokines; Fungi; LPS; PBMC; Pattern-recognition receptors; Sarcoidosis

References

  1. Adv Exp Med Biol. 2013;756:239-45 - PubMed
  2. Ann Agric Environ Med. 2011;18(1):7-12 - PubMed
  3. Conn Med. 2005 Jan;69(1):9-17 - PubMed
  4. Int J Exp Pathol. 1994 Apr;75(2):85-90 - PubMed
  5. Indoor Air. 2005 Jun;15(3):160-9 - PubMed
  6. Ann Agric Environ Med. 2010;17(1):9-13 - PubMed
  7. Am J Respir Crit Care Med. 2004 Dec 15;170(12):1324-30 - PubMed
  8. Clin Exp Immunol. 2011 Oct;166(1):87-93 - PubMed
  9. Methods. 2001 Dec;25(4):402-8 - PubMed
  10. Clin Exp Immunol. 2013 Sep;173(3):512-22 - PubMed
  11. Clin Exp Immunol. 2008 Jun;152(3):423-31 - PubMed
  12. Nat Rev Immunol. 2011 Apr;11(4):275-88 - PubMed
  13. Fibrogenesis Tissue Repair. 2010 Oct 11;3:20 - PubMed
  14. Curr Opin Allergy Clin Immunol. 2009 Feb;9(1):55-9 - PubMed
  15. Environ Health. 2011 Jan 20;10(1):8 - PubMed
  16. Am J Respir Crit Care Med. 1999 Aug;160(2):736-55 - PubMed
  17. Chest. 2003 May;123(5):1527-35 - PubMed
  18. J Clin Immunol. 2009 Jan;29(1):78-89 - PubMed
  19. Clin Exp Immunol. 2010 Oct;162(1):68-74 - PubMed
  20. Semin Respir Crit Care Med. 2014 Jun;35(3):307-15 - PubMed
  21. BMC Med Genet. 2010 Oct 28;11:151 - PubMed
  22. J Exp Med. 2003 May 5;197(9):1119-24 - PubMed
  23. Clin Dermatol. 2007 May-Jun;25(3):259-66 - PubMed
  24. J Clin Rheumatol. 2010 Sep;16(6):274-9 - PubMed
  25. Clin Chest Med. 2008 Sep;29(3):379-90, vii - PubMed
  26. Respir Med. 2007 Apr;101(4):774-8 - PubMed
  27. Am J Respir Cell Mol Biol. 2013 Nov;49(5):829-36 - PubMed
  28. Mar Drugs. 2010 Feb 21;8(2):292-312 - PubMed
  29. J Immunol. 2008 Sep 15;181(6):4279-86 - PubMed
  30. Int Immunopharmacol. 2011 Aug;11(8):939-47 - PubMed
  31. Med Hypotheses. 2008;70(4):831-4 - PubMed
  32. Environ Health Perspect. 2005 Apr;113(4):485-90 - PubMed
  33. Respir Res. 2010 Sep 02;11:121 - PubMed
  34. Toxicology. 2000 Nov 2;152(1-3):47-52 - PubMed
  35. Indoor Air. 2009 Feb;19(1):83-90 - PubMed
  36. Am J Public Health. 1998 Dec;88(12):1795-800 - PubMed
  37. Am J Respir Crit Care Med. 2004 Sep 1;170(5):567-71 - PubMed
  38. Environ Health Perspect. 2015 Jan;123(1):6-20 - PubMed
  39. J Exp Med. 2005 Mar 21;201(6):949-60 - PubMed
  40. Am J Pathol. 2004 Feb;164(2):567-75 - PubMed
  41. Am J Respir Crit Care Med. 2011 Mar 1;183(5):573-81 - PubMed
  42. Ther Adv Respir Dis. 2011 Jun;5(3):157-62 - PubMed
  43. Int J Immunopharmacol. 1992 Feb;14(2):173-83 - PubMed
  44. Exp Mol Med. 2013 Dec 06;45:e66 - PubMed

Publication Types