Display options
Share it on

PeerJ. 2016 Sep 22;4:e2486. doi: 10.7717/peerj.2486. eCollection 2016.

Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics.

PeerJ

Christian Rinke, Serene Low, Ben J Woodcroft, Jean-Baptiste Raina, Adam Skarshewski, Xuyen H Le, Margaret K Butler, Roman Stocker, Justin Seymour, Gene W Tyson, Philip Hugenholtz

Affiliations

  1. Australian Centre for Ecogenomics/School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, QLD , Australia.
  2. Climate Change Cluster, University of Technology Sydney , Sydney, New South Wales , Australia.
  3. Department of Civil, Environmental and Geomatic Engineering, ETH Zurich , Zurich , Switzerland.
  4. Australian Centre for Ecogenomics/School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia; Advanced Water Management Centre, University of Queensland, Brisbane, QLD, Australia.
  5. Australian Centre for Ecogenomics/School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.

PMID: 27688978 PMCID: PMC5036114 DOI: 10.7717/peerj.2486

Abstract

High-throughput sequencing libraries are typically limited by the requirement for nanograms to micrograms of input DNA. This bottleneck impedes the microscale analysis of ecosystems and the exploration of low biomass samples. Current methods for amplifying environmental DNA to bypass this bottleneck introduce considerable bias into metagenomic profiles. Here we describe and validate a simple modification of the Illumina Nextera XT DNA library preparation kit which allows creation of shotgun libraries from sub-nanogram amounts of input DNA. Community composition was reproducible down to 100 fg of input DNA based on analysis of a mock community comprising 54 phylogenetically diverse Bacteria and Archaea. The main technical issues with the low input libraries were a greater potential for contamination, limited DNA complexity which has a direct effect on assembly and binning, and an associated higher percentage of read duplicates. We recommend a lower limit of 1 pg (∼100-1,000 microbial cells) to ensure community composition fidelity, and the inclusion of negative controls to identify reagent-specific contaminants. Applying the approach to marine surface water, pronounced differences were observed between bacterial community profiles of microliter volume samples, which we attribute to biological variation. This result is consistent with expected microscale patchiness in marine communities. We thus envision that our benchmarked, slightly modified low input DNA protocol will be beneficial for microscale and low biomass metagenomics.

Keywords: 100 fg; Illumina; Low biomass; Low input DNA library; Low volume; Marine microheterogeneity; Microscale metagenomics; Nextera XT; Picogram; Reagent contamination

Conflict of interest statement

The authors declare that they have no competing interests.

References

  1. PLoS One. 2012;7(12):e52249 - PubMed
  2. Nucleic Acids Res. 2015 Jan;43(Database issue):D1099-106 - PubMed
  3. PLoS One. 2013 Jun 12;8(6):e65388 - PubMed
  4. Brief Bioinform. 2012 Nov;13(6):646-55 - PubMed
  5. ISME J. 2013 Feb;7(2):312-24 - PubMed
  6. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10716-21 - PubMed
  7. J Bacteriol. 1993 Nov;175(21):6932-8 - PubMed
  8. Environ Microbiol. 2013 Jun;15(6):1882-99 - PubMed
  9. Nat Methods. 2010 Dec;7(12):943-4 - PubMed
  10. BMC Biol. 2014 Nov 12;12:87 - PubMed
  11. Appl Environ Microbiol. 2001 Apr;67(4):1636-45 - PubMed
  12. BMC Genomics. 2013 May 10;14:320 - PubMed
  13. Genome Biol. 2010;11(12):R119 - PubMed
  14. Expert Rev Dermatol. 2010 Apr;5(2):183-195 - PubMed
  15. Bioinformatics. 2014 Apr 15;30(8):1073-1080 - PubMed
  16. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16213-6 - PubMed
  17. Genome Biol. 2014 Aug 07;15(8):420 - PubMed
  18. PLoS One. 2013 Apr 29;8(4):e62856 - PubMed
  19. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  20. PeerJ. 2015 Aug 27;3:e1165 - PubMed
  21. Genome Res. 2012 Jan;22(1):125-33 - PubMed
  22. Genome Res. 2004 Jun;14(6):1188-90 - PubMed
  23. Environ Microbiol. 2015 Jul;17(7):2239-53 - PubMed
  24. Microbiol Mol Biol Rev. 2012 Dec;76(4):792-812 - PubMed
  25. Appl Environ Microbiol. 2011 Nov;77(22):8071-9 - PubMed
  26. Nat Rev Microbiol. 2007 Oct;5(10):782-91 - PubMed
  27. ISME J. 2009 Nov;3(11):1314-7 - PubMed
  28. Front Microbiol. 2015 Jan 08;5:771 - PubMed
  29. Methods Mol Biol. 2011;733:241-55 - PubMed
  30. BMC Bioinformatics. 2011 Dec 17;12:480 - PubMed
  31. Nucleic Acids Res. 2006 May 22;34(9):2820-32 - PubMed
  32. Science. 2012 Nov 2;338(6107):628-33 - PubMed
  33. Environ Microbiol. 2012 Sep;14(9):2526-37 - PubMed
  34. Nat Methods. 2009 Apr;6(4):291-5 - PubMed
  35. Appl Environ Microbiol. 2005 Jun;71(6):3342-7 - PubMed
  36. Bioinformatics. 2007 May 15;23(10):1282-8 - PubMed
  37. PLoS One. 2014 Oct 29;9(10):e110808 - PubMed
  38. PLoS One. 2011;6(10):e26161 - PubMed
  39. Annu Rev Microbiol. 2003;57:369-94 - PubMed
  40. Microb Ecol. 1996 May;31(3):225-47 - PubMed
  41. Nat Methods. 2015 Jan;12(1):59-60 - PubMed
  42. Evol Appl. 2014 Nov;7(9):1026-42 - PubMed
  43. PLoS One. 2015 May 26;10(5):e0124158 - PubMed
  44. Nucleic Acids Res. 1990 Oct 25;18(20):6097-100 - PubMed
  45. Genome Res. 2015 Jul;25(7):1043-55 - PubMed
  46. PLoS Pathog. 2014 Nov 20;10(11):e1004437 - PubMed
  47. Int J Syst Evol Microbiol. 2008 Jan;58(Pt 1):93-6 - PubMed
  48. Nat Methods. 2007 Jun;4(6):495-500 - PubMed
  49. BMC Biotechnol. 2013 Nov 20;13:104 - PubMed
  50. Ann Rev Mar Sci. 2011;3:347-71 - PubMed
  51. Nucleic Acids Res. 2012 Jan;40(1):e3 - PubMed
  52. BMC Genomics. 2015 Oct 24;16:856 - PubMed
  53. Genome Biol. 2014;15(12):550 - PubMed

Publication Types